organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2,6-Di­ethyl­phen­yl)imino­meth­yl]-N-(2-meth­oxy­phen­yl)aniline

aSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: suqing@jlu.edu.cn, ymu@jlu.edu.cn

(Received 4 August 2009; accepted 19 September 2009; online 26 September 2009)

The title anilide–imine compound, C24H26N2O, features an intra­molecular N—H⋯N hydrogen bond involving the imine and anilide groups to generate an S(6) ring motif. The mol­ecule displays an E configuration about the imine C=N double bond, with the dihedral angle between the two benzene rings being 86.5°. The packing is stabilized by three different C—H⋯π inter­actions.

Related literature

For related background on anilido–imine complexes, see: Liu et al. (2005[Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614-1619.], 2006[Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem. pp. 1216-1222.]); Ren et al. (2007[Ren, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 1808-1814.]); Su et al. (2007[Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp 4168-4175.]); Yao et al. (2008[Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486-2491.]); Wang et al. (2006[Wang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579-2585.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N2O

  • Mr = 358.47

  • Monoclinic, P 21 /c

  • a = 12.930 (3) Å

  • b = 7.4757 (15) Å

  • c = 21.303 (4) Å

  • β = 97.88 (3)°

  • V = 2039.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.44 × 0.40 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.986

  • 19406 measured reflections

  • 4670 independent reflections

  • 3515 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.06

  • 4670 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.902 (14) 1.976 (15) 2.7126 (15) 137.8 (12)
C5—H5⋯Cg2i 0.93 2.79 3.5296 (8) 137
C10—H10⋯Cg1ii 0.93 2.84 3.7651 (6) 176
C16—H16ACg3iii 0.97 2.82 3.6614 (7) 146
Symmetry codes: (i) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y-1, -z; (iii) [-x, y+{\script{5\over 2}}, -z+{\script{1\over 2}}]. Cg1, Cg2 and Cg3 are the centroids the C8–C13, C18–C23 and C1–C6 rings, respectively.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A chelating anilide-imine compound has recently attracted increasing attention because it has a similar framwork and combination of steric and electronic characterics found in β-diketiminate and salicyaldiminato ligands which have been extensively researched in coordination chemistry and catalysis. (Wang et al., 2006) We have recently reported the luminescent properties of a series of zinc(II) (Su et al., 2007), aluminium(III) (Liu et al., 2005; 2006) and boron(III) (Ren et al., 2007) complexes with chelating anilido-imine ligands and catalytical properties of aluminium(III) (Yao et al., 2008) for the polymerization of ε-caprolactone. Good results have been obtained. As a part of our study, the preparation and crystal structure of the new anilido-imine title compound (I) (Fig. 1), is reported.

The bond lengths and angles are within normal ranges. The C7=N2 [1.2730 (15) Å] bond length is comparable to those found in similar anilido-imine compounds, such as {2-[(2,6-diethyl-phenylimino)-methyl]-phenyl}- (2,4-dimethyl-quinolin-7-yl)-amine [1.267 (4), 1.275 (4) Å] (Su et al., 2007) and {2-[(2,6-methyl-phenylimino)-methyl]-phenyl}- (2,4-dimethyl-quinolin-7-yl)-amine [1.271 (2) Å] (Su et al., 2007). The molecule adopts an E configuration about the central C=N bond. The dihedral angles between the central benzene ring (C1—C6) and the two outer benzene rings of the anilido-imine compound are 86.5° (C8—C13) and 54.2° (C18—C23). The dihedral angle between the C8—C13 and C18—C23 phenyl rings is 113.4°. An intramolecular N1—H1···N2 hydrogen bond forms a six-membered ring, generating an S(6) motif (Bernstein et al., 1995).

In the packing of the crystal, there exists three different types of C—H···π interactions (Fig.2 and Table1). The C—H···π interactions involving H10 form chains (Fig.2a). The additional C—H···π interactions through H5 and H16a interlink these chains (Fig.2b, and Fig.2c).

Related literature top

For related background on anilido–imine complexes, see: Liu et al. (2005, 2006); Ren et al. (2007); Su et al. (2007); Yao et al. (2008); Wang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Preligand (2,6-Diethyl-phenyl)-(2-fluoro-benzylidene)-amine [ortho-C6H4(CH=NC6H3Et2-2,6)] was synthesized according to a literature method (Su et al., 2007). A solution of nBuLi (1.60 mol/L, 9.2 mmol) in n-hexane was added to a solution of 4-methoxy-phenylamine (1.14 g, 9.2 mmol) in THF (20 ml) at -78 °C. The mixture was allowed to warm to room temperature and stirred for additional 4 h. The resulting solution was transferred into a solution of ortho-C6H4(CH=NC6H3Et2-2,6) (2.36 g, 9.2 mmol) in THF at 25 °C. After stirring for two days, the reaction was quenched with H2O (20 ml). The organic phase was evaporated to dryness to give the crude product as a brown oil that was purified by column chromatography on silica gel with ethyl acetate/ petroleum ether (1:34 in volume) as eluent. The pure product as yellow crystals (1.72 g, 52%) suitable for data collection were obtained after concentrating the solution. Anal. Calcd. for C24H26N2O (358.48): C 80.41, H 7.36, N 7.81; Found: C 80.26, H 7.25, N 7.90%. 1H NMR (500 MHz, CDCl3, 298 K) δ (p.p.m.): 1.20 (t, 2 x 3H, J = 7.5 Hz, CH3CH2), 2.60 (q, 2 x 2H, J = 7.5 Hz, CH3CH2), 3.86 (s, 3H, O—CH3), 6.80 (t, 1H, J = 6.5 Hz), 6.95 (d, 2H, J = 7.5 Hz), 7.10 (d, 1H, J = 6.0 Hz), 7.16 (br, 2H), 7.20 (d, 1H, J = 9.0 Hz), 7.28 (d, 3H, J = 3.5 Hz), 7.37 (d, 1H, J = 7.0 Hz), 8.76 (s, 1H, CH=N), 10.99 (br, 1H, NH).

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The atom H1 was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. Packing of the molecule of (I) showing the different C—H···π interactions. Cg1: the centroid of the benzene ring (C8—C13); Cg2: the centroid of the benzene ring (C18—C23); Cg3: the centroid of the benzene ring (C1—C6). C10···Cg1 = 3.7651 (6) Å, C5···Cg2 = 3.5296 (8) Å, and C16···Cg3 = 3.6614 (7) Å. Only the hydrogen atoms involved in supramolecular interactions are shown for clarity. The green dots are the centers of the aromatic rings.
2-[(2,6-Diethylphenyl)iminomethyl]-N-(2-methoxyphenyl)aniline top
Crystal data top
C24H26N2OF(000) = 768
Mr = 358.47Dx = 1.167 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.930 (3) ÅCell parameters from 14731 reflections
b = 7.4757 (15) Åθ = 3.2–27.5°
c = 21.303 (4) ŵ = 0.07 mm1
β = 97.88 (3)°T = 295 K
V = 2039.7 (7) Å3Block, yellow
Z = 40.44 × 0.40 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4670 independent reflections
Radiation source: fine-focus sealed tube3515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.969, Tmax = 0.986k = 99
19406 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2475P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4670 reflectionsΔρmax = 0.19 e Å3
252 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0251 (17)
Crystal data top
C24H26N2OV = 2039.7 (7) Å3
Mr = 358.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.930 (3) ŵ = 0.07 mm1
b = 7.4757 (15) ÅT = 295 K
c = 21.303 (4) Å0.44 × 0.40 × 0.19 mm
β = 97.88 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4670 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3515 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.986Rint = 0.035
19406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
4670 reflectionsΔρmin = 0.17 e Å3
252 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52847 (8)1.56960 (13)0.17089 (5)0.0608 (3)
N10.28321 (8)0.98441 (15)0.08469 (5)0.0460 (3)
N20.12969 (8)0.75355 (13)0.10555 (5)0.0405 (2)
C10.28918 (8)0.88995 (15)0.03007 (5)0.0363 (3)
C20.22193 (8)0.74272 (15)0.01420 (5)0.0367 (3)
C30.22900 (9)0.64858 (17)0.04164 (6)0.0436 (3)
H30.18400.55300.05230.052*
C40.30038 (10)0.69250 (19)0.08147 (6)0.0507 (3)
H40.30370.62820.11850.061*
C50.36708 (10)0.83456 (19)0.06505 (6)0.0500 (3)
H50.41640.86470.09120.060*
C60.36198 (9)0.93198 (17)0.01092 (6)0.0443 (3)
H60.40751.02740.00120.053*
C70.14318 (9)0.68530 (16)0.05253 (5)0.0390 (3)
H70.09940.59180.03720.047*
C80.04576 (9)0.68824 (16)0.13614 (5)0.0392 (3)
C90.06378 (10)0.54991 (16)0.18027 (6)0.0455 (3)
C100.01957 (12)0.49231 (18)0.21017 (7)0.0554 (4)
H100.00960.39970.23950.067*
C110.11638 (12)0.5703 (2)0.19697 (7)0.0582 (4)
H110.17140.52930.21700.070*
C120.13204 (10)0.7088 (2)0.15432 (7)0.0535 (4)
H120.19780.76100.14610.064*
C130.05162 (9)0.77272 (17)0.12316 (6)0.0439 (3)
C140.17116 (13)0.4706 (2)0.19727 (7)0.0612 (4)
H14A0.20260.45390.15890.073*
H14B0.16490.35400.21640.073*
C150.24158 (13)0.5868 (3)0.24255 (9)0.0841 (5)
H15A0.25060.70060.22310.126*
H15B0.30820.52960.25280.126*
H15C0.21070.60410.28060.126*
C160.06704 (11)0.9317 (2)0.07983 (7)0.0566 (4)
H16A0.14120.95600.07000.068*
H16B0.04080.90330.04050.068*
C170.01226 (13)1.0986 (2)0.10827 (9)0.0700 (4)
H17A0.04151.13280.14550.105*
H17B0.02151.19400.07790.105*
H17C0.06091.07440.11940.105*
C180.34258 (9)1.13770 (16)0.10489 (6)0.0398 (3)
C190.39696 (10)1.14282 (17)0.16584 (6)0.0452 (3)
H190.39311.04630.19290.054*
C200.45650 (10)1.28936 (18)0.18645 (6)0.0487 (3)
H200.49201.29150.22750.058*
C210.46397 (9)1.43359 (17)0.14663 (6)0.0434 (3)
C220.40796 (10)1.43273 (17)0.08638 (6)0.0455 (3)
H220.41121.52990.05950.055*
C230.34714 (9)1.28581 (17)0.06663 (6)0.0445 (3)
H230.30831.28670.02650.053*
C240.54257 (13)1.7158 (2)0.13088 (9)0.0701 (5)
H24A0.56981.67360.09380.105*
H24B0.59081.79920.15310.105*
H24C0.47671.77390.11850.105*
H10.2406 (11)0.937 (2)0.1104 (7)0.056 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0714 (6)0.0509 (6)0.0578 (6)0.0154 (5)0.0004 (5)0.0115 (5)
N10.0485 (6)0.0493 (6)0.0423 (6)0.0118 (5)0.0134 (5)0.0073 (5)
N20.0442 (5)0.0395 (5)0.0387 (5)0.0029 (4)0.0090 (4)0.0020 (4)
C10.0339 (5)0.0391 (6)0.0354 (6)0.0038 (4)0.0026 (4)0.0005 (5)
C20.0359 (5)0.0382 (6)0.0355 (6)0.0032 (5)0.0035 (5)0.0024 (5)
C30.0442 (6)0.0432 (7)0.0432 (6)0.0000 (5)0.0051 (5)0.0054 (5)
C40.0533 (7)0.0565 (8)0.0442 (7)0.0027 (6)0.0135 (6)0.0108 (6)
C50.0448 (7)0.0593 (8)0.0491 (7)0.0014 (6)0.0179 (6)0.0019 (6)
C60.0372 (6)0.0471 (7)0.0498 (7)0.0025 (5)0.0100 (5)0.0018 (6)
C70.0407 (6)0.0356 (6)0.0403 (6)0.0022 (5)0.0040 (5)0.0010 (5)
C80.0452 (6)0.0371 (6)0.0364 (6)0.0069 (5)0.0096 (5)0.0048 (5)
C90.0601 (7)0.0365 (6)0.0422 (7)0.0020 (5)0.0155 (6)0.0023 (5)
C100.0805 (10)0.0415 (7)0.0488 (7)0.0124 (7)0.0252 (7)0.0025 (6)
C110.0649 (9)0.0601 (9)0.0549 (8)0.0248 (7)0.0274 (7)0.0164 (7)
C120.0436 (7)0.0638 (9)0.0543 (8)0.0100 (6)0.0105 (6)0.0166 (7)
C130.0430 (6)0.0475 (7)0.0403 (6)0.0063 (5)0.0027 (5)0.0077 (5)
C140.0806 (10)0.0491 (8)0.0576 (9)0.0180 (7)0.0223 (8)0.0147 (7)
C150.0681 (10)0.0977 (14)0.0828 (12)0.0204 (10)0.0036 (9)0.0036 (11)
C160.0490 (7)0.0647 (9)0.0534 (8)0.0063 (6)0.0028 (6)0.0061 (7)
C170.0731 (10)0.0509 (9)0.0823 (11)0.0074 (7)0.0021 (8)0.0104 (8)
C180.0384 (6)0.0414 (6)0.0404 (6)0.0009 (5)0.0078 (5)0.0056 (5)
C190.0549 (7)0.0443 (7)0.0369 (6)0.0011 (6)0.0081 (5)0.0005 (5)
C200.0579 (8)0.0530 (8)0.0338 (6)0.0018 (6)0.0009 (5)0.0055 (5)
C210.0444 (6)0.0408 (7)0.0447 (7)0.0008 (5)0.0057 (5)0.0096 (5)
C220.0494 (7)0.0398 (7)0.0467 (7)0.0027 (5)0.0043 (5)0.0024 (5)
C230.0440 (6)0.0467 (7)0.0404 (6)0.0017 (5)0.0026 (5)0.0000 (5)
C240.0739 (10)0.0446 (8)0.0899 (12)0.0133 (7)0.0053 (9)0.0044 (8)
Geometric parameters (Å, º) top
O1—C211.3704 (15)C12—H120.9300
O1—C241.4130 (18)C13—C161.5011 (19)
N1—C11.3723 (15)C14—C151.508 (2)
N1—C181.4131 (16)C14—H14A0.9700
N1—H10.902 (14)C14—H14B0.9700
N2—C71.2730 (15)C15—H15A0.9600
N2—C81.4265 (15)C15—H15B0.9600
C1—C61.4045 (16)C15—H15C0.9600
C1—C21.4147 (16)C16—C171.519 (2)
C2—C31.3959 (16)C16—H16A0.9700
C2—C71.4545 (16)C16—H16B0.9700
C3—C41.3765 (17)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.3824 (19)C17—H17C0.9600
C4—H40.9300C18—C231.3809 (18)
C5—C61.3731 (18)C18—C191.3898 (18)
C5—H50.9300C19—C201.3758 (18)
C6—H60.9300C19—H190.9300
C7—H70.9300C20—C211.3833 (19)
C8—C91.3955 (17)C20—H200.9300
C8—C131.4019 (17)C21—C221.3846 (19)
C9—C101.3932 (18)C22—C231.3824 (18)
C9—C141.507 (2)C22—H220.9300
C10—C111.375 (2)C23—H230.9300
C10—H100.9300C24—H24A0.9600
C11—C121.374 (2)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.3925 (18)
C21—O1—C24117.94 (11)C15—C14—H14A109.1
C1—N1—C18125.73 (10)C9—C14—H14B109.1
C1—N1—H1115.0 (9)C15—C14—H14B109.1
C18—N1—H1119.1 (9)H14A—C14—H14B107.8
C7—N2—C8118.26 (10)C14—C15—H15A109.5
N1—C1—C6122.17 (11)C14—C15—H15B109.5
N1—C1—C2119.91 (10)H15A—C15—H15B109.5
C6—C1—C2117.90 (10)C14—C15—H15C109.5
C3—C2—C1119.07 (10)H15A—C15—H15C109.5
C3—C2—C7117.53 (11)H15B—C15—H15C109.5
C1—C2—C7123.38 (10)C13—C16—C17112.94 (12)
C4—C3—C2122.20 (12)C13—C16—H16A109.0
C4—C3—H3118.9C17—C16—H16A109.0
C2—C3—H3118.9C13—C16—H16B109.0
C3—C4—C5118.36 (12)C17—C16—H16B109.0
C3—C4—H4120.8H16A—C16—H16B107.8
C5—C4—H4120.8C16—C17—H17A109.5
C6—C5—C4121.32 (11)C16—C17—H17B109.5
C6—C5—H5119.3H17A—C17—H17B109.5
C4—C5—H5119.3C16—C17—H17C109.5
C5—C6—C1121.12 (12)H17A—C17—H17C109.5
C5—C6—H6119.4H17B—C17—H17C109.5
C1—C6—H6119.4C23—C18—C19118.18 (11)
N2—C7—C2124.84 (11)C23—C18—N1122.41 (11)
N2—C7—H7117.6C19—C18—N1119.40 (11)
C2—C7—H7117.6C20—C19—C18120.62 (12)
C9—C8—C13121.95 (11)C20—C19—H19119.7
C9—C8—N2119.61 (11)C18—C19—H19119.7
C13—C8—N2118.34 (11)C19—C20—C21120.54 (12)
C10—C9—C8117.96 (12)C19—C20—H20119.7
C10—C9—C14120.89 (12)C21—C20—H20119.7
C8—C9—C14121.10 (11)O1—C21—C20115.93 (11)
C11—C10—C9121.01 (13)O1—C21—C22124.53 (12)
C11—C10—H10119.5C20—C21—C22119.54 (12)
C9—C10—H10119.5C23—C22—C21119.29 (12)
C12—C11—C10120.16 (12)C23—C22—H22120.4
C12—C11—H11119.9C21—C22—H22120.4
C10—C11—H11119.9C18—C23—C22121.73 (12)
C11—C12—C13121.45 (13)C18—C23—H23119.1
C11—C12—H12119.3C22—C23—H23119.1
C13—C12—H12119.3O1—C24—H24A109.5
C12—C13—C8117.43 (13)O1—C24—H24B109.5
C12—C13—C16121.32 (12)H24A—C24—H24B109.5
C8—C13—C16121.18 (11)O1—C24—H24C109.5
C9—C14—C15112.50 (13)H24A—C24—H24C109.5
C9—C14—H14A109.1H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.902 (14)1.976 (15)2.7126 (15)137.8 (12)
C5—H5···Cg2i0.932.793.5296 (8)137
C10—H10···Cg1ii0.932.843.7651 (6)176
C16—H16A···Cg3iii0.972.823.6614 (7)146
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H26N2O
Mr358.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.930 (3), 7.4757 (15), 21.303 (4)
β (°) 97.88 (3)
V3)2039.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.44 × 0.40 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
19406, 4670, 3515
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.06
No. of reflections4670
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.902 (14)1.976 (15)2.7126 (15)137.8 (12)
C5—H5···Cg2i0.932.7933.5296 (8)136.856
C10—H10···Cg1ii0.932.8373.7651 (6)175.652
C16—H16A···Cg3iii0.972.8163.6614 (7)146.117
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y+5/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant Nos. 20772044 and 20674024). One of the authors (QS) is grateful for support from Jilin University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem. pp. 1216–1222.  Web of Science CSD CrossRef Google Scholar
First citationRen, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 1808–1814.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp 4168–4175.  Google Scholar
First citationWang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579–2585.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486–2491.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds