organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Pyridylmeth­yl)phthalimide

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: fmedrano@uaem.mx

(Received 1 September 2009; accepted 23 September 2009; online 30 September 2009)

In the title compound, C14H10N2O2, the phtalimide and 2-pyridylmethyl units are almost perpendicular, with an inter­planar angle of 85.74 (2)°. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming chains running along the b axis. The packing is further stabilized by offset ππ inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.855 (2) Å.

Related literature

For general backround to phthalimides, see: Ing & Manske (1926[Ing, H. R. & Manske, R. H. F. (1926). J. Chem. Soc. pp. 2349-2351.]); Gibson & Bradshaw (1968[Gibson, M. S. & Bradshaw, R. W. (1968). Angew. Chem. Int. Ed. Engl. 7, 919-930.]); Ishii & Sakaguchi (2004[Ishii, Y. & Sakaguchi, S. (2004). Modern Oxidation Methods, edited by J.-E. Backvall, pp. 119-163. Weinheim: Wiley-VCH Verlag GmbH & Co.]). For their applications in photochemical synthesis and catalytic and chiral reactions, see: Yoon & Mariano (2001[Yoon, U. C. & Mariano, P. S. (2001). Acc. Chem. Res. 34, 523-533.]); Huang et al. (2006[Huang, H., Liu, X., Deng, J., Qui, M. & Zheng, Z. (2006). Org. Lett. 8, 3359-3362.]); Rodríguez et al. 2006[Rodríguez, B., Rantanen, T. & Bolm, C. (2006). Angew. Chem. Int. Ed. 45, 6924-6926.]. For their biological activity, see: Miyachi et al. (1997[Miyachi, H., Azma, A. & Hashimoto, Y. (1997). Yakugaku Zasshi, 117, 91-107.]); Vázquez et al. (2005[Vázquez, M. E., Blanco, J. B. & Imperiali, B. (2005). J. Am. Chem. Soc. 127, 1300-1306.]). For phthalimide derivatives, see: Vamecq et al. (2000[Vamecq, J., Bac, P., Herrenknecht, C., Maurois, P., Delcourt, P. & Stables, J. P. (2000). J. Med. Chem. 43, 1311-1319.]). For analysis of hydrogen-bonding patterns, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101-109.]); Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem Res. 24, 290-296.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O2

  • Mr = 238.24

  • Monoclinic, P 21 /c

  • a = 11.7734 (18) Å

  • b = 14.239 (2) Å

  • c = 7.0698 (11) Å

  • β = 106.373 (3)°

  • V = 1137.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.982

  • 7150 measured reflections

  • 1994 independent reflections

  • 1567 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.155

  • S = 1.20

  • 1994 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.452 (3) 171
C6—H6⋯O1ii 0.93 2.53 3.452 (3) 171
C14—H14⋯O1iii 0.93 2.65 3.373 (3) 135
C11—H11⋯O2iv 0.93 2.57 3.401 (3) 148
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Phthalimides are indispensable in protection and deprotection of primary amines (Ing & Manske, 1926; Gibson & Bradshaw, 1968; Ishii & Sakaguchi, 2004). Phthalimide derivatives are useful in photochemical synthesis (Yoon & Mariano, 2001) and catalytic reactions (Huang et al., 2006; Rodríguez et al., 2006). Some of the phthalimide derivatives have applications as drugs (Vamecq et al., 2000). Thus, they have been used as novel biological modifiers for tumor necrosis (Miyachi et al., 1997). Their fluorescence properties are highly environment sensitive (Vázquez et al., 2005) and find application as biological probes. In our ongoing research on phthalimides as intermediates in supramolecular host design, we have synthesized the title compound, (I).

In (I), all bond lengths and angles show normal values. The phtalimide and 2-pyridylmethyl moieties are almost pependicular with an interplanar angle of 85.74° (Fig.1).

In the crystal, molecules are linked by weak C—H···O interactions (Table 1) (Desiraju, 1991; Hunter, 1994), forming chains running along the b axis.

In the hydrogen-bonding pattern, two graph sets (Bernstein et al., 1995) can be distinguished: R22(10), involving atoms (···H6/C6—C8/O2···H3/C3—C1/O1)and R22(16), involving atoms (···H14/C14/N2/C10/C9/N1/C1/O1···)2. Both patterns R22(10) and R22(16) are linked through weak C—H···O···H—C three center interactions, generating a motif belonging to the unitary graph set R64(30) (Fig. 2).

The packing is further stabilized by aromatic π-π interactions, with distances between the centroids of the pyridine rings [Cg1, Cg1'i (symmetry code: (i) 1 - x, -y, -z)] of 3.855 Å (Fig. 2).

Related literature top

For general backround to phthalimides, see: Ing & Manske (1926); Gibson & Bradshaw (1968); Ishii & Sakaguchi (2004). For their applications in photochemical synthesis and catalytic and chiral reactions, see: Yoon & Mariano (2001); Huang et al. (2006); Rodríguez et al. 2006. For their biological activity, see: Miyachi et al. (1997); Vázquez et al. (2005). For phthalimide derivatives, see: Vamecq et al. (2000). For analysis of hydrogen-bonding patterns, see: Hunter (1994); Desiraju (1991); Bernstein et al. (1995).

Experimental top

A solution of 2-aminomethyl-pyridine (1 g, 9.25 mmol) in dimethylformamide(DMF) (5 ml) was added dropwise to (1.36 g, 9.18 mmol) of phthalic anhydride dissolved in 10 ml of DMF and refluxed for 6 h. The resulting solution was concentrated under reduced pressure to a viscous yellow liquid. Addition of water (25 ml) gave a colorless solid which was recovered by filtration and dried under vacuum. The product was recrystallized from ethanol to give suitable crystals for X-ray diffraction analysis (m.p. 399 K)

Refinement top

Non-hydrogen atoms were refined anisotropically. Aromatic and methylene H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2 Ueq(Cmethylene)], but the coordinates were refined freely.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in (I), showing the C3—H3···O2, C6—H6···O1, C14—H14···O1 interactions and the R22(10), R22(16), R64(30) motifs. Dashed line indicates the vector between pyridyl centroids (Cg1, Cg1').
N-(2-Pyridylmethyl)phthalimide top
Crystal data top
C14H10N2O2F(000) = 496
Mr = 238.24Dx = 1.392 Mg m3
Monoclinic, P21/cMelting point: 399 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.7734 (18) ÅCell parameters from 2665 reflections
b = 14.239 (2) Åθ = 2.3–26.8°
c = 7.0698 (11) ŵ = 0.10 mm1
β = 106.373 (3)°T = 293 K
V = 1137.1 (3) Å3Prism, colourless
Z = 40.45 × 0.28 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1994 independent reflections
Radiation source: fine-focus sealed tube1567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.8°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.958, Tmax = 0.982l = 88
7150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.1417P]
where P = (Fo2 + 2Fc2)/3
1994 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H10N2O2V = 1137.1 (3) Å3
Mr = 238.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7734 (18) ŵ = 0.10 mm1
b = 14.239 (2) ÅT = 293 K
c = 7.0698 (11) Å0.45 × 0.28 × 0.19 mm
β = 106.373 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1567 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.982Rint = 0.028
7150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.20Δρmax = 0.18 e Å3
1994 reflectionsΔρmin = 0.29 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8978 (2)0.03798 (15)0.1337 (3)0.0493 (6)
C21.01324 (19)0.07017 (14)0.2618 (3)0.0456 (5)
C31.1103 (2)0.01983 (16)0.3657 (3)0.0533 (6)
H31.11000.04550.36650.064*
C41.2086 (2)0.07039 (18)0.4690 (3)0.0613 (7)
H41.27600.03840.53990.074*
C51.2088 (2)0.16764 (17)0.4691 (3)0.0612 (6)
H51.27610.19970.54050.073*
C61.1106 (2)0.21791 (16)0.3648 (3)0.0557 (6)
H61.11050.28320.36460.067*
C71.01340 (18)0.16754 (14)0.2616 (3)0.0466 (5)
C80.8971 (2)0.19976 (15)0.1347 (3)0.0515 (6)
C90.7148 (2)0.11883 (15)0.0729 (3)0.0576 (6)
H9A0.70480.06210.15170.069*
H9B0.70750.17180.16170.069*
C100.61635 (19)0.12393 (13)0.0243 (3)0.0484 (6)
C110.6362 (2)0.13358 (14)0.2231 (3)0.0573 (6)
H110.71280.13800.30660.069*
C120.5388 (3)0.13668 (17)0.2973 (4)0.0705 (7)
H120.54890.14370.43190.085*
C130.4280 (2)0.12929 (16)0.1695 (5)0.0708 (7)
H130.36140.13030.21560.085*
C140.4168 (2)0.12042 (16)0.0258 (4)0.0672 (7)
H140.34100.11590.11180.081*
N10.83334 (16)0.11904 (11)0.0626 (3)0.0530 (5)
N20.50806 (18)0.11779 (12)0.1016 (3)0.0610 (6)
O10.86171 (15)0.04110 (11)0.0924 (2)0.0652 (5)
O20.85977 (15)0.27886 (11)0.0976 (2)0.0681 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0604 (15)0.0411 (13)0.0521 (13)0.0013 (10)0.0249 (11)0.0003 (10)
C20.0532 (13)0.0419 (12)0.0483 (12)0.0033 (10)0.0251 (10)0.0040 (9)
C30.0655 (16)0.0427 (12)0.0571 (13)0.0090 (11)0.0260 (12)0.0072 (10)
C40.0564 (15)0.0678 (17)0.0592 (14)0.0082 (12)0.0154 (12)0.0116 (12)
C50.0554 (15)0.0658 (17)0.0603 (14)0.0079 (12)0.0126 (12)0.0027 (12)
C60.0610 (15)0.0447 (13)0.0630 (14)0.0036 (11)0.0201 (12)0.0014 (11)
C70.0528 (13)0.0407 (12)0.0507 (12)0.0014 (9)0.0217 (10)0.0034 (9)
C80.0566 (14)0.0404 (13)0.0608 (14)0.0018 (10)0.0218 (11)0.0040 (10)
C90.0572 (14)0.0559 (15)0.0555 (13)0.0027 (11)0.0088 (11)0.0002 (10)
C100.0528 (13)0.0335 (12)0.0540 (12)0.0012 (9)0.0069 (10)0.0016 (9)
C110.0575 (14)0.0506 (14)0.0571 (13)0.0010 (11)0.0052 (11)0.0051 (10)
C120.088 (2)0.0634 (17)0.0610 (15)0.0016 (14)0.0220 (15)0.0102 (12)
C130.0612 (16)0.0625 (17)0.091 (2)0.0054 (12)0.0250 (15)0.0024 (14)
C140.0513 (15)0.0626 (17)0.0794 (18)0.0002 (11)0.0050 (13)0.0013 (13)
N10.0516 (11)0.0409 (11)0.0647 (12)0.0015 (8)0.0135 (9)0.0013 (8)
N20.0555 (12)0.0563 (13)0.0627 (12)0.0001 (9)0.0029 (10)0.0025 (9)
O10.0795 (12)0.0428 (10)0.0732 (11)0.0070 (8)0.0214 (9)0.0059 (8)
O20.0689 (11)0.0409 (10)0.0873 (12)0.0063 (8)0.0100 (9)0.0071 (8)
Geometric parameters (Å, º) top
C1—O11.210 (3)C8—N11.389 (3)
C1—N11.395 (3)C9—N11.453 (3)
C1—C21.477 (3)C9—C101.506 (3)
C2—C31.374 (3)C9—H9A0.9700
C2—C71.386 (3)C9—H9B0.9700
C3—C41.383 (3)C10—N21.336 (3)
C3—H30.9300C10—C111.366 (3)
C4—C51.385 (4)C11—C121.391 (3)
C4—H40.9300C11—H110.9300
C5—C61.382 (3)C12—C131.365 (4)
C5—H50.9300C12—H120.9300
C6—C71.373 (3)C13—C141.356 (4)
C6—H60.9300C13—H130.9300
C7—C81.483 (3)C14—N21.329 (3)
C8—O21.210 (2)C14—H140.9300
O1—C1—N1124.4 (2)N1—C9—H9A108.6
O1—C1—C2129.5 (2)C10—C9—H9A108.6
N1—C1—C2106.10 (18)N1—C9—H9B108.6
C3—C2—C7121.4 (2)C10—C9—H9B108.6
C3—C2—C1130.5 (2)H9A—C9—H9B107.5
C7—C2—C1108.13 (18)N2—C10—C11123.1 (2)
C2—C3—C4117.2 (2)N2—C10—C9113.95 (19)
C2—C3—H3121.4C11—C10—C9122.9 (2)
C4—C3—H3121.4C10—C11—C12118.1 (2)
C3—C4—C5121.5 (2)C10—C11—H11120.9
C3—C4—H4119.3C12—C11—H11120.9
C5—C4—H4119.3C13—C12—C11118.9 (3)
C6—C5—C4121.1 (2)C13—C12—H12120.5
C6—C5—H5119.4C11—C12—H12120.5
C4—C5—H5119.4C14—C13—C12118.8 (2)
C7—C6—C5117.3 (2)C14—C13—H13120.6
C7—C6—H6121.3C12—C13—H13120.6
C5—C6—H6121.3N2—C14—C13123.8 (2)
C6—C7—C2121.5 (2)N2—C14—H14118.1
C6—C7—C8130.5 (2)C13—C14—H14118.1
C2—C7—C8107.97 (19)C8—N1—C1111.69 (19)
O2—C8—N1124.4 (2)C8—N1—C9124.25 (18)
O2—C8—C7129.5 (2)C1—N1—C9124.06 (18)
N1—C8—C7106.11 (18)C14—N2—C10117.2 (2)
N1—C9—C10114.79 (19)
O1—C1—C2—C30.9 (4)N1—C9—C10—C113.7 (3)
N1—C1—C2—C3178.73 (19)N2—C10—C11—C120.3 (3)
O1—C1—C2—C7179.4 (2)C9—C10—C11—C12179.42 (19)
N1—C1—C2—C70.2 (2)C10—C11—C12—C130.5 (3)
C7—C2—C3—C40.5 (3)C11—C12—C13—C140.9 (4)
C1—C2—C3—C4177.91 (19)C12—C13—C14—N20.5 (4)
C2—C3—C4—C50.5 (3)O2—C8—N1—C1178.6 (2)
C3—C4—C5—C60.3 (3)C7—C8—N1—C10.7 (2)
C4—C5—C6—C70.0 (3)O2—C8—N1—C92.3 (3)
C5—C6—C7—C20.1 (3)C7—C8—N1—C9178.38 (18)
C5—C6—C7—C8178.8 (2)O1—C1—N1—C8180.0 (2)
C3—C2—C7—C60.2 (3)C2—C1—N1—C80.3 (2)
C1—C2—C7—C6178.53 (18)O1—C1—N1—C90.9 (3)
C3—C2—C7—C8179.31 (18)C2—C1—N1—C9178.74 (18)
C1—C2—C7—C80.6 (2)C10—C9—N1—C887.1 (2)
C6—C7—C8—O22.5 (4)C10—C9—N1—C193.9 (2)
C2—C7—C8—O2178.4 (2)C13—C14—N2—C100.3 (3)
C6—C7—C8—N1178.2 (2)C11—C10—N2—C140.7 (3)
C2—C7—C8—N10.8 (2)C9—C10—N2—C14179.06 (18)
N1—C9—C10—N2176.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.452 (3)171
C6—H6···O1ii0.932.533.452 (3)171
C14—H14···O1iii0.932.653.373 (3)135
C11—H11···O2iv0.932.573.401 (3)148
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10N2O2
Mr238.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.7734 (18), 14.239 (2), 7.0698 (11)
β (°) 106.373 (3)
V3)1137.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7150, 1994, 1567
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.155, 1.20
No. of reflections1994
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.452 (3)171
C6—H6···O1ii0.932.533.452 (3)171
C14—H14···O1iii0.932.653.373 (3)134.9
C11—H11···O2iv0.932.573.401 (3)148
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by CONACyT, Mexico (grant No. 49997Q). OGB also thanks CONACyT for a thesis fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem Res. 24, 290-296.  CrossRef CAS Web of Science Google Scholar
First citationGibson, M. S. & Bradshaw, R. W. (1968). Angew. Chem. Int. Ed. Engl. 7, 919–930.  CrossRef CAS Web of Science Google Scholar
First citationHuang, H., Liu, X., Deng, J., Qui, M. & Zheng, Z. (2006). Org. Lett. 8, 3359–3362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.  CrossRef Web of Science Google Scholar
First citationIng, H. R. & Manske, R. H. F. (1926). J. Chem. Soc. pp. 2349–2351.  Google Scholar
First citationIshii, Y. & Sakaguchi, S. (2004). Modern Oxidation Methods, edited by J.-E. Backvall, pp. 119–163. Weinheim: Wiley-VCH Verlag GmbH & Co.  Google Scholar
First citationMiyachi, H., Azma, A. & Hashimoto, Y. (1997). Yakugaku Zasshi, 117, 91–107.  CAS PubMed Web of Science Google Scholar
First citationRodríguez, B., Rantanen, T. & Bolm, C. (2006). Angew. Chem. Int. Ed. 45, 6924–6926.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVamecq, J., Bac, P., Herrenknecht, C., Maurois, P., Delcourt, P. & Stables, J. P. (2000). J. Med. Chem. 43, 1311–1319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVázquez, M. E., Blanco, J. B. & Imperiali, B. (2005). J. Am. Chem. Soc. 127, 1300–1306.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoon, U. C. & Mariano, P. S. (2001). Acc. Chem. Res. 34, 523-533.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds