organic compounds
N-(2-Pyridylmethyl)phthalimide
aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: fmedrano@uaem.mx
In the title compound, C14H10N2O2, the phtalimide and 2-pyridylmethyl units are almost perpendicular, with an interplanar angle of 85.74 (2)°. In the crystal, molecules are linked by weak C—H⋯O interactions, forming chains running along the b axis. The packing is further stabilized by offset π–π interactions between adjacent pyridine rings, with a centroid–centroid distance of 3.855 (2) Å.
Related literature
For general backround to phthalimides, see: Ing & Manske (1926); Gibson & Bradshaw (1968); Ishii & Sakaguchi (2004). For their applications in photochemical synthesis and catalytic and chiral reactions, see: Yoon & Mariano (2001); Huang et al. (2006); Rodríguez et al. 2006. For their biological activity, see: Miyachi et al. (1997); Vázquez et al. (2005). For phthalimide derivatives, see: Vamecq et al. (2000). For analysis of hydrogen-bonding patterns, see: Hunter (1994); Desiraju (1991); Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2009).
Supporting information
10.1107/S160053680903846X/fl2266sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903846X/fl2266Isup2.hkl
A solution of 2-aminomethyl-pyridine (1 g, 9.25 mmol) in dimethylformamide(DMF) (5 ml) was added dropwise to (1.36 g, 9.18 mmol) of phthalic anhydride dissolved in 10 ml of DMF and refluxed for 6 h. The resulting solution was concentrated under reduced pressure to a viscous yellow liquid. Addition of water (25 ml) gave a colorless solid which was recovered by filtration and dried under vacuum. The product was recrystallized from ethanol to give suitable crystals for X-ray
(m.p. 399 K)Non-hydrogen atoms were refined anisotropically. Aromatic and methylene H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2 Ueq(Cmethylene)], but the coordinates were refined freely.
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2009).C14H10N2O2 | F(000) = 496 |
Mr = 238.24 | Dx = 1.392 Mg m−3 |
Monoclinic, P21/c | Melting point: 399 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7734 (18) Å | Cell parameters from 2665 reflections |
b = 14.239 (2) Å | θ = 2.3–26.8° |
c = 7.0698 (11) Å | µ = 0.10 mm−1 |
β = 106.373 (3)° | T = 293 K |
V = 1137.1 (3) Å3 | Prism, colourless |
Z = 4 | 0.45 × 0.28 × 0.19 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1994 independent reflections |
Radiation source: fine-focus sealed tube | 1567 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8.3 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ϕ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −16→16 |
Tmin = 0.958, Tmax = 0.982 | l = −8→8 |
7150 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0705P)2 + 0.1417P] where P = (Fo2 + 2Fc2)/3 |
1994 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C14H10N2O2 | V = 1137.1 (3) Å3 |
Mr = 238.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.7734 (18) Å | µ = 0.10 mm−1 |
b = 14.239 (2) Å | T = 293 K |
c = 7.0698 (11) Å | 0.45 × 0.28 × 0.19 mm |
β = 106.373 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 1994 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1567 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.982 | Rint = 0.028 |
7150 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.18 e Å−3 |
1994 reflections | Δρmin = −0.29 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8978 (2) | 0.03798 (15) | 0.1337 (3) | 0.0493 (6) | |
C2 | 1.01324 (19) | 0.07017 (14) | 0.2618 (3) | 0.0456 (5) | |
C3 | 1.1103 (2) | 0.01983 (16) | 0.3657 (3) | 0.0533 (6) | |
H3 | 1.1100 | −0.0455 | 0.3665 | 0.064* | |
C4 | 1.2086 (2) | 0.07039 (18) | 0.4690 (3) | 0.0613 (7) | |
H4 | 1.2760 | 0.0384 | 0.5399 | 0.074* | |
C5 | 1.2088 (2) | 0.16764 (17) | 0.4691 (3) | 0.0612 (6) | |
H5 | 1.2761 | 0.1997 | 0.5405 | 0.073* | |
C6 | 1.1106 (2) | 0.21791 (16) | 0.3648 (3) | 0.0557 (6) | |
H6 | 1.1105 | 0.2832 | 0.3646 | 0.067* | |
C7 | 1.01340 (18) | 0.16754 (14) | 0.2616 (3) | 0.0466 (5) | |
C8 | 0.8971 (2) | 0.19976 (15) | 0.1347 (3) | 0.0515 (6) | |
C9 | 0.7148 (2) | 0.11883 (15) | −0.0729 (3) | 0.0576 (6) | |
H9A | 0.7048 | 0.0621 | −0.1517 | 0.069* | |
H9B | 0.7075 | 0.1718 | −0.1617 | 0.069* | |
C10 | 0.61635 (19) | 0.12393 (13) | 0.0243 (3) | 0.0484 (6) | |
C11 | 0.6362 (2) | 0.13358 (14) | 0.2231 (3) | 0.0573 (6) | |
H11 | 0.7128 | 0.1380 | 0.3066 | 0.069* | |
C12 | 0.5388 (3) | 0.13668 (17) | 0.2973 (4) | 0.0705 (7) | |
H12 | 0.5489 | 0.1437 | 0.4319 | 0.085* | |
C13 | 0.4280 (2) | 0.12929 (16) | 0.1695 (5) | 0.0708 (7) | |
H13 | 0.3614 | 0.1303 | 0.2156 | 0.085* | |
C14 | 0.4168 (2) | 0.12042 (16) | −0.0258 (4) | 0.0672 (7) | |
H14 | 0.3410 | 0.1159 | −0.1118 | 0.081* | |
N1 | 0.83334 (16) | 0.11904 (11) | 0.0626 (3) | 0.0530 (5) | |
N2 | 0.50806 (18) | 0.11779 (12) | −0.1016 (3) | 0.0610 (6) | |
O1 | 0.86171 (15) | −0.04110 (11) | 0.0924 (2) | 0.0652 (5) | |
O2 | 0.85977 (15) | 0.27886 (11) | 0.0976 (2) | 0.0681 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0604 (15) | 0.0411 (13) | 0.0521 (13) | −0.0013 (10) | 0.0249 (11) | 0.0003 (10) |
C2 | 0.0532 (13) | 0.0419 (12) | 0.0483 (12) | 0.0033 (10) | 0.0251 (10) | 0.0040 (9) |
C3 | 0.0655 (16) | 0.0427 (12) | 0.0571 (13) | 0.0090 (11) | 0.0260 (12) | 0.0072 (10) |
C4 | 0.0564 (15) | 0.0678 (17) | 0.0592 (14) | 0.0082 (12) | 0.0154 (12) | 0.0116 (12) |
C5 | 0.0554 (15) | 0.0658 (17) | 0.0603 (14) | −0.0079 (12) | 0.0126 (12) | 0.0027 (12) |
C6 | 0.0610 (15) | 0.0447 (13) | 0.0630 (14) | −0.0036 (11) | 0.0201 (12) | 0.0014 (11) |
C7 | 0.0528 (13) | 0.0407 (12) | 0.0507 (12) | 0.0014 (9) | 0.0217 (10) | 0.0034 (9) |
C8 | 0.0566 (14) | 0.0404 (13) | 0.0608 (14) | 0.0018 (10) | 0.0218 (11) | 0.0040 (10) |
C9 | 0.0572 (14) | 0.0559 (15) | 0.0555 (13) | −0.0027 (11) | 0.0088 (11) | 0.0002 (10) |
C10 | 0.0528 (13) | 0.0335 (12) | 0.0540 (12) | 0.0012 (9) | 0.0069 (10) | 0.0016 (9) |
C11 | 0.0575 (14) | 0.0506 (14) | 0.0571 (13) | −0.0010 (11) | 0.0052 (11) | −0.0051 (10) |
C12 | 0.088 (2) | 0.0634 (17) | 0.0610 (15) | 0.0016 (14) | 0.0220 (15) | −0.0102 (12) |
C13 | 0.0612 (16) | 0.0625 (17) | 0.091 (2) | 0.0054 (12) | 0.0250 (15) | −0.0024 (14) |
C14 | 0.0513 (15) | 0.0626 (17) | 0.0794 (18) | −0.0002 (11) | 0.0050 (13) | 0.0013 (13) |
N1 | 0.0516 (11) | 0.0409 (11) | 0.0647 (12) | −0.0015 (8) | 0.0135 (9) | 0.0013 (8) |
N2 | 0.0555 (12) | 0.0563 (13) | 0.0627 (12) | −0.0001 (9) | 0.0029 (10) | 0.0025 (9) |
O1 | 0.0795 (12) | 0.0428 (10) | 0.0732 (11) | −0.0070 (8) | 0.0214 (9) | −0.0059 (8) |
O2 | 0.0689 (11) | 0.0409 (10) | 0.0873 (12) | 0.0063 (8) | 0.0100 (9) | 0.0071 (8) |
C1—O1 | 1.210 (3) | C8—N1 | 1.389 (3) |
C1—N1 | 1.395 (3) | C9—N1 | 1.453 (3) |
C1—C2 | 1.477 (3) | C9—C10 | 1.506 (3) |
C2—C3 | 1.374 (3) | C9—H9A | 0.9700 |
C2—C7 | 1.386 (3) | C9—H9B | 0.9700 |
C3—C4 | 1.383 (3) | C10—N2 | 1.336 (3) |
C3—H3 | 0.9300 | C10—C11 | 1.366 (3) |
C4—C5 | 1.385 (4) | C11—C12 | 1.391 (3) |
C4—H4 | 0.9300 | C11—H11 | 0.9300 |
C5—C6 | 1.382 (3) | C12—C13 | 1.365 (4) |
C5—H5 | 0.9300 | C12—H12 | 0.9300 |
C6—C7 | 1.373 (3) | C13—C14 | 1.356 (4) |
C6—H6 | 0.9300 | C13—H13 | 0.9300 |
C7—C8 | 1.483 (3) | C14—N2 | 1.329 (3) |
C8—O2 | 1.210 (2) | C14—H14 | 0.9300 |
O1—C1—N1 | 124.4 (2) | N1—C9—H9A | 108.6 |
O1—C1—C2 | 129.5 (2) | C10—C9—H9A | 108.6 |
N1—C1—C2 | 106.10 (18) | N1—C9—H9B | 108.6 |
C3—C2—C7 | 121.4 (2) | C10—C9—H9B | 108.6 |
C3—C2—C1 | 130.5 (2) | H9A—C9—H9B | 107.5 |
C7—C2—C1 | 108.13 (18) | N2—C10—C11 | 123.1 (2) |
C2—C3—C4 | 117.2 (2) | N2—C10—C9 | 113.95 (19) |
C2—C3—H3 | 121.4 | C11—C10—C9 | 122.9 (2) |
C4—C3—H3 | 121.4 | C10—C11—C12 | 118.1 (2) |
C3—C4—C5 | 121.5 (2) | C10—C11—H11 | 120.9 |
C3—C4—H4 | 119.3 | C12—C11—H11 | 120.9 |
C5—C4—H4 | 119.3 | C13—C12—C11 | 118.9 (3) |
C6—C5—C4 | 121.1 (2) | C13—C12—H12 | 120.5 |
C6—C5—H5 | 119.4 | C11—C12—H12 | 120.5 |
C4—C5—H5 | 119.4 | C14—C13—C12 | 118.8 (2) |
C7—C6—C5 | 117.3 (2) | C14—C13—H13 | 120.6 |
C7—C6—H6 | 121.3 | C12—C13—H13 | 120.6 |
C5—C6—H6 | 121.3 | N2—C14—C13 | 123.8 (2) |
C6—C7—C2 | 121.5 (2) | N2—C14—H14 | 118.1 |
C6—C7—C8 | 130.5 (2) | C13—C14—H14 | 118.1 |
C2—C7—C8 | 107.97 (19) | C8—N1—C1 | 111.69 (19) |
O2—C8—N1 | 124.4 (2) | C8—N1—C9 | 124.25 (18) |
O2—C8—C7 | 129.5 (2) | C1—N1—C9 | 124.06 (18) |
N1—C8—C7 | 106.11 (18) | C14—N2—C10 | 117.2 (2) |
N1—C9—C10 | 114.79 (19) | ||
O1—C1—C2—C3 | 0.9 (4) | N1—C9—C10—C11 | 3.7 (3) |
N1—C1—C2—C3 | −178.73 (19) | N2—C10—C11—C12 | 0.3 (3) |
O1—C1—C2—C7 | 179.4 (2) | C9—C10—C11—C12 | −179.42 (19) |
N1—C1—C2—C7 | −0.2 (2) | C10—C11—C12—C13 | 0.5 (3) |
C7—C2—C3—C4 | −0.5 (3) | C11—C12—C13—C14 | −0.9 (4) |
C1—C2—C3—C4 | 177.91 (19) | C12—C13—C14—N2 | 0.5 (4) |
C2—C3—C4—C5 | 0.5 (3) | O2—C8—N1—C1 | −178.6 (2) |
C3—C4—C5—C6 | −0.3 (3) | C7—C8—N1—C1 | 0.7 (2) |
C4—C5—C6—C7 | 0.0 (3) | O2—C8—N1—C9 | 2.3 (3) |
C5—C6—C7—C2 | 0.1 (3) | C7—C8—N1—C9 | −178.38 (18) |
C5—C6—C7—C8 | −178.8 (2) | O1—C1—N1—C8 | −180.0 (2) |
C3—C2—C7—C6 | 0.2 (3) | C2—C1—N1—C8 | −0.3 (2) |
C1—C2—C7—C6 | −178.53 (18) | O1—C1—N1—C9 | −0.9 (3) |
C3—C2—C7—C8 | 179.31 (18) | C2—C1—N1—C9 | 178.74 (18) |
C1—C2—C7—C8 | 0.6 (2) | C10—C9—N1—C8 | −87.1 (2) |
C6—C7—C8—O2 | −2.5 (4) | C10—C9—N1—C1 | 93.9 (2) |
C2—C7—C8—O2 | 178.4 (2) | C13—C14—N2—C10 | 0.3 (3) |
C6—C7—C8—N1 | 178.2 (2) | C11—C10—N2—C14 | −0.7 (3) |
C2—C7—C8—N1 | −0.8 (2) | C9—C10—N2—C14 | 179.06 (18) |
N1—C9—C10—N2 | −176.06 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.93 | 2.53 | 3.452 (3) | 171 |
C6—H6···O1ii | 0.93 | 2.53 | 3.452 (3) | 171 |
C14—H14···O1iii | 0.93 | 2.65 | 3.373 (3) | 135 |
C11—H11···O2iv | 0.93 | 2.57 | 3.401 (3) | 148 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H10N2O2 |
Mr | 238.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.7734 (18), 14.239 (2), 7.0698 (11) |
β (°) | 106.373 (3) |
V (Å3) | 1137.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.45 × 0.28 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.958, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7150, 1994, 1567 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.155, 1.20 |
No. of reflections | 1994 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.29 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.93 | 2.53 | 3.452 (3) | 171 |
C6—H6···O1ii | 0.93 | 2.53 | 3.452 (3) | 171 |
C14—H14···O1iii | 0.93 | 2.65 | 3.373 (3) | 134.9 |
C11—H11···O2iv | 0.93 | 2.57 | 3.401 (3) | 148 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by CONACyT, Mexico (grant No. 49997Q). OGB also thanks CONACyT for a thesis fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1991). Acc. Chem Res. 24, 290-296. CrossRef CAS Web of Science Google Scholar
Gibson, M. S. & Bradshaw, R. W. (1968). Angew. Chem. Int. Ed. Engl. 7, 919–930. CrossRef CAS Web of Science Google Scholar
Huang, H., Liu, X., Deng, J., Qui, M. & Zheng, Z. (2006). Org. Lett. 8, 3359–3362. Web of Science CrossRef PubMed CAS Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109. CrossRef Web of Science Google Scholar
Ing, H. R. & Manske, R. H. F. (1926). J. Chem. Soc. pp. 2349–2351. Google Scholar
Ishii, Y. & Sakaguchi, S. (2004). Modern Oxidation Methods, edited by J.-E. Backvall, pp. 119–163. Weinheim: Wiley-VCH Verlag GmbH & Co. Google Scholar
Miyachi, H., Azma, A. & Hashimoto, Y. (1997). Yakugaku Zasshi, 117, 91–107. CAS PubMed Web of Science Google Scholar
Rodríguez, B., Rantanen, T. & Bolm, C. (2006). Angew. Chem. Int. Ed. 45, 6924–6926. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vamecq, J., Bac, P., Herrenknecht, C., Maurois, P., Delcourt, P. & Stables, J. P. (2000). J. Med. Chem. 43, 1311–1319. Web of Science CrossRef PubMed CAS Google Scholar
Vázquez, M. E., Blanco, J. B. & Imperiali, B. (2005). J. Am. Chem. Soc. 127, 1300–1306. Web of Science PubMed Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Yoon, U. C. & Mariano, P. S. (2001). Acc. Chem. Res. 34, 523-533. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phthalimides are indispensable in protection and deprotection of primary amines (Ing & Manske, 1926; Gibson & Bradshaw, 1968; Ishii & Sakaguchi, 2004). Phthalimide derivatives are useful in photochemical synthesis (Yoon & Mariano, 2001) and catalytic reactions (Huang et al., 2006; Rodríguez et al., 2006). Some of the phthalimide derivatives have applications as drugs (Vamecq et al., 2000). Thus, they have been used as novel biological modifiers for tumor necrosis (Miyachi et al., 1997). Their fluorescence properties are highly environment sensitive (Vázquez et al., 2005) and find application as biological probes. In our ongoing research on phthalimides as intermediates in supramolecular host design, we have synthesized the title compound, (I).
In (I), all bond lengths and angles show normal values. The phtalimide and 2-pyridylmethyl moieties are almost pependicular with an interplanar angle of 85.74° (Fig.1).
In the crystal, molecules are linked by weak C—H···O interactions (Table 1) (Desiraju, 1991; Hunter, 1994), forming chains running along the b axis.
In the hydrogen-bonding pattern, two graph sets (Bernstein et al., 1995) can be distinguished: R22(10), involving atoms (···H6/C6—C8/O2···H3/C3—C1/O1)and R22(16), involving atoms (···H14/C14/N2/C10/C9/N1/C1/O1···)2. Both patterns R22(10) and R22(16) are linked through weak C—H···O···H—C three center interactions, generating a motif belonging to the unitary graph set R64(30) (Fig. 2).
The packing is further stabilized by aromatic π-π interactions, with distances between the centroids of the pyridine rings [Cg1, Cg1'i (symmetry code: (i) 1 - x, -y, -z)] of 3.855 Å (Fig. 2).