metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1169-m1170

Tetra­kis(6-methyl-2,2′-bi­pyridine)-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetra­nitrato-1κ4O,O′;4κ2O,O′-tetra­lead(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 31 July 2009; accepted 28 August 2009; online 5 September 2009)

In the tetranuclear centrosymmetric title compound, [Pb4(NO3)8(C11H10N2)4], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The hepta­coordinated lead(II) ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy) ligand. The six-coordinate lead(II) ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H⋯O hydrogen bonds may stabilize the structure.

Related literature

For different metal complexes of 6-methyl-2,2′-bipyridine, see: Ahmadi, Kalateh et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Ahmadi, Ebadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Newkome et al. (1982[Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782-1783.]); Onggo et al. (1990[Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19-30.], 2005[Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb4(NO3)8(C11H10N2)4]

  • Mr = 1002.84

  • Triclinic, [P \overline 1]

  • a = 11.093 (2) Å

  • b = 11.266 (2) Å

  • c = 12.642 (3) Å

  • α = 109.25 (3)°

  • β = 95.43 (3)°

  • γ = 105.62 (3)°

  • V = 1407.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.03 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: numerical shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.021, Tmax = 0.052

  • 16752 measured reflections

  • 7561 independent reflections

  • 6277 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.10

  • 7561 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −2.37 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.566 (8)
Pb1—O2 2.609 (8)
Pb1—O4 2.851 (8)
Pb1—O5 2.675 (9)
Pb1—O8 2.693 (8)
Pb1—N1 2.618 (8)
Pb1—N2 2.528 (8)
Pb2—O9 2.624 (7)
Pb2—O10 2.763 (11)
Pb2—O11 2.629 (8)
Pb2—N6 2.470 (7)
Pb2—N7 2.422 (8)
Pb2—O12i 2.910 (9)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4ii 0.96 2.55 3.378 (14) 144
C3—H3⋯O10iii 0.93 2.50 3.368 (17) 155
C10—H10⋯O6iv 0.93 2.47 3.349 (17) 157
C12—H12A⋯O10 0.96 2.48 3.299 (15) 143
C12—H12B⋯O7 0.96 2.49 3.412 (17) 160
C12—H12C⋯O8iii 0.96 2.59 3.516 (14) 162
C19—H19⋯O9v 0.93 2.45 3.253 (13) 145
C21—H21⋯O1iv 0.93 2.42 3.212 (15) 143
C22—H22⋯O12i 0.93 2.53 3.268 (15) 137
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1; (v) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

6-Methyl-2,2'-bipyridine (6-mbipy) is a good bidentate ligand, and numerous complexes with 6-mbipy have been prepared, such as that of zinc (Ahmadi, Kalateh et al., 2008), mercury (Ahmadi, Ebadi et al., 2008), palladium (Newkome et al., 1982), ruthenium (Onggo, Scudder et al., 2005) and iron (Onggo, Hook et al., 1990). We report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of this tetrameric compound, (I), (Fig. 1), contains two different hepta and hexa-coordinated PbII centers that the metallic centers site in distorted environment by five oxygen atoms from three nitrate and two nitrogen atom from one 6-methyl-2,2'-bipyridine and distorted octahedral environment by four oxygen atoms from three nitrate and two nitrogen atom from one 6-methyl-2,2'-bipyridine respectively. The Pb—O and Pb—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) may stabilize the structure.

Related literature top

For different metal complexes of 6-methyl-2,2'-bipyridine, see: Ahmadi, Kalateh et al. (2008); Ahmadi, Ebadi et al. (2008); Newkome et al. (1982); Onggo et al. (1990, 2005).

Experimental top

6-Methyl-2,2'-bipyridine (0.14 g, 0.79 mmol, 0.13 ml) in 5 ml me thanol was added to a solution of Pb(NO3)2 (0.26 g, 0.79 mmol) in methanol (10 ml) and the resulting colorless solution was stirred at 313 K for 30 min. This solution was left to evaporate slowly at room temperature. After one week, colorless blocks of (I) were isolated (yield 0.29 g, 73.2%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and refined as riding with Uiso(H)=1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -x,-y,-z]
Tetrakis(6-methyl-2,2'-bipyridine)-1κ2N,N'; 2κ2N,N';3κ2N,N';4κ2N,N'- tetra-µ-nitrato-1:2κ2O:O';2:3κ3O: O',O'';2:3κ3O,O':O''; 3:4κ2O:O'-tetranitrato- 1κ4O,O';4κ2O,O'-tetralead(II) top
Crystal data top
[Pb4(NO3)8(C11H10N2)4]Z = 2
Mr = 1002.84F(000) = 936
Triclinic, P1Dx = 2.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.093 (2) ÅCell parameters from 1311 reflections
b = 11.266 (2) Åθ = 1.7–29.2°
c = 12.642 (3) ŵ = 12.03 mm1
α = 109.25 (3)°T = 298 K
β = 95.43 (3)°Block, colorless
γ = 105.62 (3)°0.40 × 0.30 × 0.25 mm
V = 1407.0 (7) Å3
Data collection top
Bruker SMART CCD
diffractometer
7561 independent reflections
Radiation source: fine-focus sealed tube6277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 29.2°, θmin = 1.7°
Absorption correction: numerical
shape of crystal determined optically (program? reference?)
h = 1515
Tmin = 0.021, Tmax = 0.052k = 1514
16752 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0636P)2 + 3.7094P]
where P = (Fo2 + 2Fc2)/3
7561 reflections(Δ/σ)max = 0.011
397 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 2.37 e Å3
Crystal data top
[Pb4(NO3)8(C11H10N2)4]γ = 105.62 (3)°
Mr = 1002.84V = 1407.0 (7) Å3
Triclinic, P1Z = 2
a = 11.093 (2) ÅMo Kα radiation
b = 11.266 (2) ŵ = 12.03 mm1
c = 12.642 (3) ÅT = 298 K
α = 109.25 (3)°0.40 × 0.30 × 0.25 mm
β = 95.43 (3)°
Data collection top
Bruker SMART CCD
diffractometer
7561 independent reflections
Absorption correction: numerical
shape of crystal determined optically (program? reference?)
6277 reflections with I > 2σ(I)
Tmin = 0.021, Tmax = 0.052Rint = 0.089
16752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.10Δρmax = 2.18 e Å3
7561 reflectionsΔρmin = 2.37 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9335 (12)0.7297 (9)0.8235 (9)0.062 (3)
H1A0.92080.69130.74160.074*
H1B1.02340.76290.85580.074*
H1C0.89830.80130.84460.074*
C20.8691 (9)0.6277 (9)0.8670 (7)0.0478 (18)
C30.7749 (12)0.6393 (12)0.9294 (9)0.066 (3)
H30.75150.71590.94850.079*
C40.7160 (12)0.5403 (12)0.9634 (10)0.067 (3)
H40.65030.54761.00320.080*
C50.7530 (10)0.4297 (10)0.9393 (8)0.053 (2)
H50.71420.36190.96360.063*
C60.8491 (8)0.4204 (8)0.8785 (7)0.0412 (15)
C70.8970 (8)0.3056 (8)0.8500 (7)0.0424 (16)
C80.8691 (9)0.2158 (9)0.9059 (9)0.052 (2)
H80.81870.22640.96090.063*
C90.9175 (12)0.1117 (9)0.8781 (10)0.062 (3)
H90.89870.05010.91320.074*
C100.9918 (11)0.0992 (10)0.8002 (10)0.060 (2)
H101.02880.03190.78340.072*
C111.0127 (10)0.1894 (9)0.7449 (9)0.053 (2)
H111.05770.17620.68590.063*
C120.3946 (11)0.3441 (9)0.3475 (10)0.062 (3)
H12A0.38140.31920.26590.075*
H12B0.48340.39130.38050.075*
H12C0.34460.40000.37780.075*
C130.3544 (9)0.2208 (9)0.3761 (8)0.0505 (19)
C140.2605 (10)0.2030 (13)0.4403 (10)0.068 (3)
H140.21930.26600.46460.081*
C150.2295 (11)0.0929 (14)0.4671 (10)0.075 (3)
H150.16640.07980.50940.091*
C160.2915 (9)0.0006 (12)0.4318 (9)0.062 (3)
H160.27230.07450.45070.074*
C170.3841 (7)0.0227 (8)0.3667 (7)0.0425 (16)
C180.4550 (8)0.0716 (8)0.3243 (7)0.0442 (17)
C190.4256 (11)0.1938 (10)0.3387 (9)0.063 (3)
H190.36040.21850.37590.076*
C200.4965 (13)0.2769 (10)0.2960 (11)0.072 (3)
H200.47740.35890.30360.087*
C210.5926 (12)0.2405 (10)0.2438 (11)0.067 (3)
H210.64050.29590.21600.081*
C220.6182 (10)0.1186 (10)0.2325 (10)0.059 (2)
H220.68360.09310.19560.071*
N10.9053 (7)0.5176 (7)0.8420 (6)0.0411 (13)
N20.9713 (8)0.2921 (7)0.7728 (6)0.0477 (16)
N31.2895 (7)0.5378 (9)0.7956 (8)0.057 (2)
N40.9322 (8)0.2233 (8)0.4204 (7)0.0519 (17)
N50.7285 (7)0.3733 (8)0.4898 (6)0.0469 (15)
N60.4148 (6)0.1316 (7)0.3391 (6)0.0410 (13)
N70.5523 (7)0.0368 (7)0.2727 (6)0.0443 (14)
N80.3510 (8)0.0199 (8)0.0272 (7)0.0505 (16)
O11.2315 (7)0.4180 (7)0.7307 (8)0.071 (2)
O21.2252 (7)0.6164 (7)0.8206 (7)0.0591 (16)
O31.4048 (7)0.5766 (10)0.8320 (9)0.083 (3)
O40.9642 (9)0.3404 (8)0.4264 (7)0.068 (2)
O50.9608 (9)0.2066 (8)0.5144 (8)0.076 (2)
O60.8789 (12)0.1308 (10)0.3342 (9)0.110 (4)
O70.7188 (10)0.4369 (9)0.4276 (8)0.082 (3)
O80.7761 (7)0.4279 (7)0.5941 (6)0.0578 (16)
O90.6873 (7)0.2468 (7)0.4469 (6)0.0612 (17)
O100.3682 (10)0.1365 (8)0.0852 (8)0.077 (3)
O110.4108 (7)0.0399 (7)0.0670 (7)0.0614 (17)
O120.2747 (8)0.0373 (8)0.0665 (7)0.070 (2)
Pb11.02005 (3)0.45241 (3)0.67017 (2)0.04043 (9)
Pb20.58525 (3)0.16179 (3)0.22876 (3)0.04202 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.087 (7)0.044 (5)0.063 (6)0.030 (5)0.012 (5)0.024 (4)
C20.057 (5)0.046 (4)0.046 (4)0.030 (4)0.008 (4)0.014 (3)
C30.086 (8)0.074 (7)0.052 (5)0.049 (6)0.018 (5)0.021 (5)
C40.076 (7)0.081 (7)0.065 (6)0.048 (6)0.041 (5)0.028 (5)
C50.057 (5)0.064 (5)0.048 (4)0.022 (4)0.017 (4)0.029 (4)
C60.045 (4)0.048 (4)0.038 (3)0.021 (3)0.009 (3)0.020 (3)
C70.047 (4)0.040 (4)0.042 (4)0.012 (3)0.011 (3)0.019 (3)
C80.053 (5)0.050 (5)0.067 (5)0.016 (4)0.021 (4)0.036 (4)
C90.079 (7)0.043 (4)0.073 (6)0.019 (5)0.020 (5)0.032 (5)
C100.070 (6)0.043 (4)0.075 (6)0.026 (4)0.017 (5)0.026 (4)
C110.059 (5)0.048 (5)0.061 (5)0.028 (4)0.020 (4)0.022 (4)
C120.068 (6)0.045 (5)0.078 (7)0.035 (4)0.015 (5)0.013 (4)
C130.048 (5)0.050 (5)0.049 (4)0.019 (4)0.008 (4)0.010 (4)
C140.052 (5)0.086 (8)0.067 (6)0.031 (5)0.027 (5)0.019 (6)
C150.056 (6)0.112 (10)0.064 (6)0.025 (6)0.036 (5)0.035 (6)
C160.044 (5)0.080 (7)0.064 (6)0.009 (5)0.018 (4)0.038 (5)
C170.034 (3)0.048 (4)0.044 (4)0.007 (3)0.008 (3)0.021 (3)
C180.040 (4)0.039 (4)0.048 (4)0.003 (3)0.004 (3)0.019 (3)
C190.070 (6)0.053 (5)0.066 (6)0.002 (5)0.007 (5)0.037 (5)
C200.093 (8)0.044 (5)0.082 (7)0.019 (5)0.008 (6)0.036 (5)
C210.083 (8)0.050 (5)0.080 (7)0.039 (5)0.005 (6)0.027 (5)
C220.053 (5)0.052 (5)0.075 (6)0.026 (4)0.006 (5)0.022 (5)
N10.046 (4)0.040 (3)0.043 (3)0.022 (3)0.010 (3)0.016 (3)
N20.060 (4)0.043 (4)0.045 (4)0.020 (3)0.015 (3)0.018 (3)
N30.038 (4)0.064 (5)0.081 (6)0.012 (3)0.004 (4)0.047 (5)
N40.057 (4)0.054 (4)0.055 (4)0.019 (3)0.021 (3)0.017 (3)
N50.038 (3)0.056 (4)0.049 (4)0.020 (3)0.007 (3)0.019 (3)
N60.035 (3)0.041 (3)0.045 (3)0.012 (3)0.006 (3)0.014 (3)
N70.052 (4)0.036 (3)0.047 (4)0.017 (3)0.011 (3)0.016 (3)
N80.051 (4)0.053 (4)0.050 (4)0.018 (3)0.015 (3)0.020 (3)
O10.054 (4)0.053 (4)0.118 (7)0.021 (3)0.016 (4)0.045 (4)
O20.054 (4)0.053 (4)0.076 (5)0.024 (3)0.017 (3)0.025 (3)
O30.043 (4)0.096 (6)0.111 (7)0.012 (4)0.003 (4)0.053 (6)
O40.088 (6)0.058 (4)0.062 (4)0.015 (4)0.019 (4)0.032 (3)
O50.086 (6)0.066 (5)0.091 (6)0.027 (4)0.019 (5)0.047 (4)
O60.121 (9)0.070 (6)0.086 (7)0.011 (6)0.025 (6)0.023 (5)
O70.104 (7)0.089 (6)0.081 (6)0.051 (5)0.020 (5)0.051 (5)
O80.052 (4)0.065 (4)0.046 (3)0.019 (3)0.011 (3)0.007 (3)
O90.056 (4)0.063 (4)0.058 (4)0.011 (3)0.009 (3)0.022 (3)
O100.089 (7)0.059 (5)0.078 (5)0.040 (5)0.004 (5)0.023 (4)
O110.057 (4)0.062 (4)0.075 (5)0.025 (3)0.009 (3)0.033 (4)
O120.062 (4)0.078 (5)0.059 (4)0.015 (4)0.002 (3)0.021 (4)
Pb10.04429 (17)0.04041 (16)0.04192 (15)0.01671 (12)0.01061 (11)0.01886 (12)
Pb20.04585 (17)0.03412 (15)0.04792 (17)0.01031 (11)0.01553 (12)0.01783 (12)
Geometric parameters (Å, º) top
Pb1—O12.566 (8)C5—C61.379 (14)
Pb1—O22.609 (8)C6—C71.478 (13)
Pb1—O42.851 (8)C7—C81.401 (14)
Pb1—O52.675 (9)C8—C91.375 (16)
Pb1—O82.693 (8)C9—C101.339 (18)
Pb1—N12.618 (8)C10—C111.396 (16)
Pb1—N22.528 (8)C12—C131.512 (15)
Pb2—O92.624 (7)C13—C141.392 (16)
Pb2—O102.763 (11)C14—C151.36 (2)
Pb2—O112.629 (8)C15—C161.375 (18)
Pb2—N62.470 (7)C16—C171.397 (14)
Pb2—N72.422 (8)C17—C181.480 (13)
Pb2—O12i2.910 (9)C18—C191.403 (15)
O1—N31.269 (13)C19—C201.389 (18)
O2—N31.261 (12)C20—C211.348 (19)
O3—N31.222 (12)C21—C221.384 (17)
O4—N41.245 (13)C1—H1A0.9600
O5—N41.287 (13)C1—H1B0.9600
O6—N41.192 (14)C1—H1C0.9600
O7—N51.241 (13)C3—H30.9300
O8—N51.247 (10)C4—H40.9300
O9—N51.275 (12)C5—H50.9300
O10—N81.226 (13)C8—H80.9300
O11—N81.244 (12)C9—H90.9300
O12—N81.244 (12)C10—H100.9300
N1—C21.354 (13)C11—H110.9300
N1—C61.349 (12)C12—H12A0.9600
N2—C71.333 (12)C12—H12B0.9600
N2—C111.312 (14)C12—H12C0.9600
N6—C131.338 (13)C14—H140.9300
N6—C171.350 (12)C15—H150.9300
N7—C181.348 (12)C16—H160.9300
N7—C221.329 (14)C19—H190.9300
C1—C21.477 (15)C20—H200.9300
C2—C31.376 (16)C21—H210.9300
C3—C41.354 (19)C22—H220.9300
C4—C51.365 (18)
O1—Pb1—O249.6 (3)N1—C2—C3119.6 (10)
O1—Pb1—O4105.4 (3)C1—C2—C3123.3 (10)
O1—Pb1—O584.7 (3)C2—C3—C4120.6 (12)
O1—Pb1—O8166.8 (3)C3—C4—C5120.0 (12)
O1—Pb1—N1111.9 (3)C4—C5—C6118.8 (11)
O1—Pb1—N273.1 (3)N1—C6—C5121.1 (9)
O2—Pb1—O4133.0 (3)N1—C6—C7116.2 (8)
O2—Pb1—O5134.1 (3)C5—C6—C7122.7 (9)
O2—Pb1—O8141.9 (2)N2—C7—C6118.4 (8)
O2—Pb1—N183.7 (2)N2—C7—C8120.7 (9)
O2—Pb1—N294.9 (3)C6—C7—C8120.8 (8)
O4—Pb1—O545.5 (3)C7—C8—C9118.9 (10)
O4—Pb1—O871.0 (3)C8—C9—C10119.8 (10)
O4—Pb1—N1140.2 (3)C9—C10—C11118.6 (11)
O4—Pb1—N2116.8 (3)N2—C11—C10122.6 (10)
O5—Pb1—O884.0 (3)N6—C13—C12117.1 (9)
O5—Pb1—N1124.2 (3)N6—C13—C14121.8 (10)
O5—Pb1—N272.2 (3)C12—C13—C14121.1 (10)
O8—Pb1—N169.5 (2)C13—C14—C15119.5 (12)
O8—Pb1—N296.9 (3)C14—C15—C16120.0 (12)
N1—Pb1—N263.9 (3)C15—C16—C17118.2 (12)
O9—Pb2—O10141.1 (3)N6—C17—C16122.1 (9)
O9—Pb2—O11141.2 (3)N6—C17—C18115.9 (7)
O9—Pb2—N670.3 (2)C16—C17—C18122.0 (9)
O9—Pb2—N775.0 (2)N7—C18—C17118.5 (8)
O9—Pb2—O12i117.1 (2)N7—C18—C19119.6 (9)
O10—Pb2—O1146.0 (3)C17—C18—C19121.9 (9)
O10—Pb2—N675.8 (3)C18—C19—C20118.3 (11)
O10—Pb2—N7109.1 (3)C19—C20—C21121.0 (11)
O10—Pb2—O12i101.8 (3)C20—C21—C22118.3 (12)
O11—Pb2—N681.6 (2)N7—C22—C21122.0 (11)
O11—Pb2—N769.7 (3)C2—C1—H1A110.00
O11—Pb2—O12i74.6 (3)C2—C1—H1B110.00
N6—Pb2—N767.5 (3)C2—C1—H1C110.00
O12i—Pb2—N6147.3 (3)H1A—C1—H1B109.00
O12i—Pb2—N783.3 (3)H1A—C1—H1C109.00
Pb1—O1—N396.4 (6)H1B—C1—H1C109.00
Pb1—O2—N394.6 (6)C2—C3—H3120.00
Pb1—O4—N494.8 (6)C4—C3—H3120.00
Pb1—O4—Pb1ii110.9 (3)C3—C4—H4120.00
Pb1ii—O4—N4153.4 (7)C5—C4—H4120.00
Pb1—O5—N4102.2 (6)C4—C5—H5121.00
Pb1—O8—N5120.0 (6)C6—C5—H5121.00
Pb2—O9—N5110.7 (5)C7—C8—H8121.00
Pb2—O10—N894.1 (7)C9—C8—H8121.00
Pb2—O11—N8100.3 (6)C8—C9—H9120.00
Pb2i—O12—N8106.0 (7)C10—C9—H9120.00
Pb1—N1—C2119.9 (6)C9—C10—H10121.00
Pb1—N1—C6116.9 (6)C11—C10—H10121.00
C2—N1—C6119.9 (8)N2—C11—H11119.00
Pb1—N2—C7120.8 (6)C10—C11—H11119.00
Pb1—N2—C11119.8 (7)C13—C12—H12A109.00
C7—N2—C11119.2 (9)C13—C12—H12B109.00
O1—N3—O2118.2 (8)C13—C12—H12C110.00
O1—N3—O3121.0 (10)H12A—C12—H12B109.00
O2—N3—O3120.7 (10)H12A—C12—H12C109.00
O4—N4—O5115.7 (9)H12B—C12—H12C109.00
O4—N4—O6123.4 (10)C13—C14—H14120.00
O5—N4—O6120.9 (10)C15—C14—H14120.00
O7—N5—O8122.7 (9)C14—C15—H15120.00
O7—N5—O9119.5 (8)C16—C15—H15120.00
O8—N5—O9117.8 (8)C15—C16—H16121.00
Pb2—N6—C13122.8 (6)C17—C16—H16121.00
Pb2—N6—C17118.7 (5)C18—C19—H19121.00
C13—N6—C17118.4 (8)C20—C19—H19121.00
Pb2—N7—C18118.9 (6)C19—C20—H20119.00
Pb2—N7—C22119.8 (7)C21—C20—H20119.00
C18—N7—C22120.7 (9)C20—C21—H21121.00
O10—N8—O11117.3 (9)C22—C21—H21121.00
O10—N8—O12121.4 (10)N7—C22—H22119.00
O11—N8—O12121.3 (9)C21—C22—H22119.00
N1—C2—C1117.2 (9)
O2—Pb1—O1—N36.2 (6)O11—Pb2—N7—C2287.4 (8)
O4—Pb1—O1—N3127.9 (6)N6—Pb2—N7—C22176.5 (8)
O5—Pb1—O1—N3168.9 (7)O12i—Pb2—N7—C2211.4 (8)
N1—Pb1—O1—N366.3 (7)O12i—Pb2—N6—C13155.8 (6)
N2—Pb1—O1—N3118.2 (7)O9—Pb2—N6—C1783.2 (6)
O4ii—Pb1—O1—N354.0 (7)O10—Pb2—N6—C17116.3 (6)
O1—Pb1—O2—N36.2 (6)O11—Pb2—N6—C1769.7 (6)
O4—Pb1—O2—N365.2 (7)N7—Pb2—N6—C171.8 (6)
O5—Pb1—O2—N30.8 (8)O12i—Pb2—N6—C1726.5 (8)
O8—Pb1—O2—N3176.8 (5)O9—Pb2—N7—C1880.0 (6)
N1—Pb1—O2—N3132.1 (6)O10—Pb2—N7—C1859.4 (7)
N2—Pb1—O2—N369.1 (6)O11—Pb2—N7—C1883.6 (6)
O4ii—Pb1—O2—N3122.8 (6)N6—Pb2—N7—C185.5 (6)
O1—Pb1—O4—N473.9 (7)O12i—Pb2—N7—C18159.6 (6)
O2—Pb1—O4—N4122.3 (6)O9—Pb2—N6—C1394.5 (7)
O5—Pb1—O4—N47.7 (6)O10—Pb2—N6—C1366.0 (7)
O8—Pb1—O4—N492.9 (7)O11—Pb2—N6—C13112.6 (7)
N1—Pb1—O4—N485.2 (8)N7—Pb2—N6—C13175.9 (7)
N2—Pb1—O4—N44.7 (8)O9—Pb2—N7—C22109.0 (8)
O4ii—Pb1—O4—N4173.2 (7)O10—Pb2—N7—C22111.6 (8)
O1—Pb1—O4—Pb1ii113.0 (3)Pb1—O1—N3—O3168.1 (10)
O2—Pb1—O4—Pb1ii64.5 (5)Pb1—O1—N3—O211.1 (10)
O5—Pb1—O4—Pb1ii179.1 (6)Pb1—O2—N3—O110.8 (10)
O8—Pb1—O4—Pb1ii80.3 (3)Pb1—O2—N3—O3168.4 (10)
N1—Pb1—O4—Pb1ii88.0 (5)Pb1ii—O4—N4—O5178.4 (13)
N2—Pb1—O4—Pb1ii168.5 (3)Pb1—O4—N4—O6167.5 (11)
O4ii—Pb1—O4—Pb1ii0.0 (3)Pb1—O4—N4—O512.8 (10)
O1ii—Pb1ii—O4—Pb197.2 (4)Pb1ii—O4—N4—O62 (2)
O2ii—Pb1ii—O4—Pb1138.7 (4)Pb1—O5—N4—O413.9 (11)
O4ii—Pb1ii—O4—Pb10.0 (3)Pb1—O5—N4—O6166.4 (10)
O5ii—Pb1ii—O4—Pb10.7 (5)Pb1—O8—N5—O981.2 (9)
O8ii—Pb1ii—O4—Pb175.2 (3)Pb1—O8—N5—O799.6 (10)
N1ii—Pb1ii—O4—Pb1138.6 (3)Pb2—O9—N5—O8177.8 (6)
O1ii—Pb1ii—O4—N467.4 (18)Pb2—O9—N5—O71.4 (11)
O2ii—Pb1ii—O4—N426.0 (17)Pb2—O10—N8—O1114.9 (10)
O4ii—Pb1ii—O4—N4164.7 (18)Pb2—O10—N8—O12166.7 (9)
O5ii—Pb1ii—O4—N4164.0 (17)Pb2—O11—N8—O1015.9 (10)
O8ii—Pb1ii—O4—N4120.2 (17)Pb2—O11—N8—O12165.7 (8)
N1ii—Pb1ii—O4—N456.7 (18)Pb2i—O12—N8—O10129.4 (9)
O1—Pb1—O5—N4125.3 (7)Pb2i—O12—N8—O1152.2 (11)
O2—Pb1—O5—N4120.0 (7)Pb1—N1—C2—C120.6 (11)
O4—Pb1—O5—N47.6 (6)C6—N1—C2—C1179.4 (8)
O8—Pb1—O5—N461.6 (7)Pb1—N1—C2—C3158.7 (7)
N1—Pb1—O5—N4121.8 (6)C6—N1—C2—C30.1 (13)
N2—Pb1—O5—N4160.8 (8)C2—N1—C6—C51.3 (13)
O4ii—Pb1—O5—N48.5 (8)Pb1—N1—C6—C722.2 (10)
O2—Pb1—O8—N5141.4 (7)C2—N1—C6—C7178.4 (8)
O4—Pb1—O8—N54.4 (7)Pb1—N1—C6—C5158.2 (7)
O5—Pb1—O8—N540.4 (7)C11—N2—C7—C6178.7 (9)
N1—Pb1—O8—N5170.4 (8)Pb1—N2—C7—C8179.4 (7)
N2—Pb1—O8—N5111.6 (7)C7—N2—C11—C105.9 (16)
O4ii—Pb1—O8—N577.1 (7)Pb1—N2—C11—C10178.3 (8)
O8—Pb1—N1—C692.2 (6)Pb1—N2—C7—C63.1 (11)
N2—Pb1—N1—C616.8 (6)C11—N2—C7—C83.7 (14)
O4ii—Pb1—N1—C6159.2 (6)Pb2—N6—C17—C16178.1 (7)
O1—Pb1—N2—C7135.5 (7)C13—N6—C17—C160.3 (13)
O2—Pb1—N2—C790.4 (7)Pb2—N6—C13—C14178.6 (8)
O4—Pb1—N2—C7125.4 (7)Pb2—N6—C13—C120.1 (12)
O5—Pb1—N2—C7134.7 (7)C17—N6—C13—C12177.7 (8)
O8—Pb1—N2—C753.3 (7)Pb2—N6—C17—C181.6 (9)
N1—Pb1—N2—C79.9 (6)C17—N6—C13—C140.9 (14)
O1—Pb1—N2—C1148.8 (8)C13—N6—C17—C18179.4 (8)
O2—Pb1—N2—C1193.9 (8)Pb2—N7—C22—C21172.4 (9)
O4—Pb1—N2—C1150.2 (8)Pb2—N7—C18—C19172.8 (7)
O5—Pb1—N2—C1140.9 (8)Pb2—N7—C18—C178.6 (10)
O8—Pb1—N2—C11122.4 (8)C18—N7—C22—C211.5 (16)
N1—Pb1—N2—C11174.4 (8)C22—N7—C18—C17179.5 (9)
O5—Pb1—N1—C625.0 (7)C22—N7—C18—C191.9 (13)
O5—Pb1—N1—C2134.5 (7)C1—C2—C3—C4177.5 (11)
O8—Pb1—N1—C267.3 (7)N1—C2—C3—C41.7 (16)
N2—Pb1—N1—C2176.2 (8)C2—C3—C4—C52.3 (18)
O4ii—Pb1—N1—C20.2 (7)C3—C4—C5—C61.1 (17)
O1—Pb1—N1—C2126.8 (7)C4—C5—C6—N10.7 (14)
O2—Pb1—N1—C285.1 (7)C4—C5—C6—C7179.0 (9)
O4—Pb1—N1—C275.0 (8)N1—C6—C7—C8164.3 (9)
O4—Pb1—N1—C684.5 (7)N1—C6—C7—N213.3 (12)
O1—Pb1—N1—C673.7 (7)C5—C6—C7—C815.4 (14)
O2—Pb1—N1—C6115.4 (6)C5—C6—C7—N2167.0 (9)
O10i—Pb2i—O12—N811.7 (7)C6—C7—C8—C9178.9 (10)
O11i—Pb2i—O12—N825.8 (7)N2—C7—C8—C91.3 (15)
N6i—Pb2i—O12—N870.4 (8)C7—C8—C9—C101.2 (17)
N7i—Pb2i—O12—N896.6 (7)C8—C9—C10—C113.2 (18)
O9i—Pb2i—O12—N8165.9 (6)C9—C10—C11—N25.8 (18)
O10—Pb2—O9—N574.9 (7)C12—C13—C14—C15178.1 (11)
O11—Pb2—O9—N5151.9 (6)N6—C13—C14—C150.5 (16)
N6—Pb2—O9—N5105.8 (6)C13—C14—C15—C160.6 (18)
N7—Pb2—O9—N5176.8 (7)C14—C15—C16—C171.2 (17)
O12i—Pb2—O9—N5109.0 (6)C15—C16—C17—N60.8 (15)
O9—Pb2—O10—N8130.6 (6)C15—C16—C17—C18179.6 (9)
O11—Pb2—O10—N88.6 (6)C16—C17—C18—C195.6 (14)
N6—Pb2—O10—N8100.6 (7)N6—C17—C18—C19174.7 (8)
N7—Pb2—O10—N841.0 (7)C16—C17—C18—N7173.0 (8)
O12i—Pb2—O10—N845.9 (7)N6—C17—C18—N76.7 (11)
O9—Pb2—O11—N8130.3 (6)C17—C18—C19—C20179.8 (10)
O10—Pb2—O11—N88.6 (6)N7—C18—C19—C201.7 (15)
N6—Pb2—O11—N887.0 (6)C18—C19—C20—C211.1 (18)
N7—Pb2—O11—N8156.0 (7)C19—C20—C21—C220.7 (19)
O12i—Pb2—O11—N8115.5 (6)C20—C21—C22—N70.9 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4ii0.962.553.378 (14)144
C3—H3···O10iii0.932.503.368 (17)155
C10—H10···O6iv0.932.473.349 (17)157
C12—H12A···O100.962.483.299 (15)143
C12—H12B···O70.962.493.412 (17)160
C12—H12C···O8iii0.962.593.516 (14)162
C19—H19···O9v0.932.453.253 (13)145
C21—H21···O1iv0.932.423.212 (15)143
C22—H22···O12i0.932.533.268 (15)137
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Pb4(NO3)8(C11H10N2)4]
Mr1002.84
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.093 (2), 11.266 (2), 12.642 (3)
α, β, γ (°)109.25 (3), 95.43 (3), 105.62 (3)
V3)1407.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)12.03
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (program? reference?)
Tmin, Tmax0.021, 0.052
No. of measured, independent and
observed [I > 2σ(I)] reflections
16752, 7561, 6277
Rint0.089
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.10
No. of reflections7561
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 2.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Pb1—O12.566 (8)Pb2—O92.624 (7)
Pb1—O22.609 (8)Pb2—O102.763 (11)
Pb1—O42.851 (8)Pb2—O112.629 (8)
Pb1—O52.675 (9)Pb2—N62.470 (7)
Pb1—O82.693 (8)Pb2—N72.422 (8)
Pb1—N12.618 (8)Pb2—O12i2.910 (9)
Pb1—N22.528 (8)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4ii0.962.553.378 (14)144
C3—H3···O10iii0.932.503.368 (17)155
C10—H10···O6iv0.932.473.349 (17)157
C12—H12A···O100.962.483.299 (15)143
C12—H12B···O70.962.493.412 (17)160
C12—H12C···O8iii0.962.593.516 (14)162
C19—H19···O9v0.932.453.253 (13)145
C21—H21···O1iv0.932.423.212 (15)143
C22—H22···O12i0.932.533.268 (15)137
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z+1.
 

Acknowledgements

We are grateful to Damghan University of Basic Sciences and the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNewkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.  CSD CrossRef CAS Web of Science Google Scholar
First citationOnggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30.  CSD CrossRef CAS Web of Science Google Scholar
First citationOnggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1169-m1170
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds