metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Tris(ethyl­enedi­amine)manganese(II) sulfate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lujing@lcu.edu.cn

(Received 21 August 2009; accepted 31 August 2009; online 9 September 2009)

In the title compound, [Mn(C2H8N2)3]SO4, the metal atom (site symmetry 3.2) is coordinated by six N atoms from three ethyl­enediamine (en) ligands in a slightly distorted octa­hedral geometry. The en ligands are generated from one half-mol­ecule in the asymmetric unit. The O atoms of the sulfate anion (S site symmetry 3.2) are disordered over four orientations in a 0.220 (12):0.210 (13):0.203 (14):0.10 (2) ratio, with one of the O atoms having site symmetry 3. In the crystal, the ions are connected by N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For a structure containing MnII and aromatic amine ligands, see: Shang et al. (2009[Shang, S.-M., Ren, C.-X., Wang, X., Lu, L.-D. & Yang, X.-J. (2009). Acta Cryst. E65, m1023-m1024.]). For other compounds containing transition metals coordinated by ethyl­enediamine, see: Cullen & Lingafelter (1970[Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.]); Daniels et al. (1995[Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27-32.]); Jameson et al. (1982[Jameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016-3020.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H8N2)3]SO4

  • Mr = 331.31

  • Trigonal, [P \overline 31c ]

  • a = 8.9460 (13) Å

  • c = 9.6230 (19) Å

  • V = 666.96 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.736

  • 2640 measured reflections

  • 402 independent reflections

  • 386 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.159

  • S = 1.55

  • 402 reflections

  • 44 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.125 (6)
N1i—Mn1—N1 81.6 (3)
Symmetry code: (i) [-x+y, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1ii 0.90 2.28 3.16 (3) 166
N1—H1A⋯O1iii 0.90 2.43 3.15 (3) 138
N1—H1B⋯O1iv 0.90 2.17 3.06 (2) 170
N1—H1B⋯O2iv 0.90 2.11 3.00 (2) 167
N1—H1A⋯O2v 0.90 2.14 2.95 (5) 148
N1—H1A⋯O3ii 0.90 1.92 2.80 (3) 166
N1—H1B⋯O3iv 0.90 2.15 2.96 (3) 150
N1—H1B⋯O3vi 0.90 2.36 3.18 (3) 152
N1—H1B⋯O4vii 0.90 2.15 2.94 (7) 146
Symmetry codes: (ii) x-y+1, x, -z+1; (iii) [-x+1, -x+y, z+{\script{1\over 2}}]; (iv) -x+y, -x+1, z+1; (v) -x+1, -y+1, -z+1; (vi) -y+1, x-y+1, z+1; (vii) x, y, z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethylenediamine (en) ligand has been seen in a number of coordination compound (Cullen et al., 1970; Daniels et al., 1995 and Jameson et al., 1982), because it can not only chelate metal center by two nitrogen atoms, but also offer hydrogen atoms to form N—H···X hydrogen bonds. In this paper, we report the structure of the title compound, (I).

In the title compound (Fig. 1), [Mn(C2H8N2)3]SO4, the cation and anion are situated on a sixfold rotation axis. The Mn(II) is coordinated by six N atoms from three en ligands in a distorted octahedral geometry. The Mn—N bond length is 2.129 Å, which is shorter than the distance between Mn(II) and aromatic nitrogen atom (Shang et al., 2009). The O atoms of the sulfate anions are disordered. The disordered anions hydrogen bond with the coordination cations by N—H···O hydrogen bonds, forming three-dimensional supramolecular network. The hydrogen bond is listed in table 1.

Related literature top

For a structure contaiing Mn(II) and aromatic amine ligands, see: Shang et al. (2009). For other compounds containing transition metals coordinated by ethylenediamine, see: Cullen & Lingafelter (1970); Daniels et al. (1995); Jameson et al. (1982).

Experimental top

Manganese sulfate (0.2 mmol) and malic acid (0.4 mmol) were added to water (15 ml). The pH value was adjusted to 9 by en. Violet blocks of (I) were obtained after several days in 30% yield. Elemental analysis, Found:C, 21.73; H, 7.24; N, 25.35%. Calc. for C6H24N6MnSO4: C, 21.20; H, 7.00; N, 24.93%.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H 0.970 and N—H 0.900 Å, and with Uiso(H) = 1.2Ueq(C,N). The O atoms are resolved into four positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands SUMP, SIMU and EADP.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. The symmetry codes for N and C atoms: A -y+1, x-y+1, z; B -x+y, -x+1, z; C -y+1, -x+1, -z+3/2; D -x+y, y, -z+3/2; E x, x-y+1, -z+3/2.
Tris(ethylenediamine)manganese(II) sulfate top
Crystal data top
[Mn(C2H8N2)3]SO4Dx = 1.650 Mg m3
Mr = 331.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 2640 reflections
a = 8.9460 (13) Åθ = 2.6–25.0°
c = 9.6230 (19) ŵ = 1.17 mm1
V = 666.96 (19) Å3T = 293 K
Z = 2Block, violet
F(000) = 3500.35 × 0.30 × 0.28 mm
Data collection top
Bruker SMART CCD
diffractometer
402 independent reflections
Radiation source: fine-focus sealed tube386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 810
Tmin = 0.686, Tmax = 0.736k = 104
2640 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0637P)2 + 1.2291P]
where P = (Fo2 + 2Fc2)/3
S = 1.55(Δ/σ)max = 0.001
402 reflectionsΔρmax = 0.72 e Å3
44 parametersΔρmin = 0.63 e Å3
2 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (15)
Crystal data top
[Mn(C2H8N2)3]SO4Z = 2
Mr = 331.31Mo Kα radiation
Trigonal, P31cµ = 1.17 mm1
a = 8.9460 (13) ÅT = 293 K
c = 9.6230 (19) Å0.35 × 0.30 × 0.28 mm
V = 666.96 (19) Å3
Data collection top
Bruker SMART CCD
diffractometer
402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
386 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.736Rint = 0.031
2640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.55Δρmax = 0.72 e Å3
402 reflectionsΔρmin = 0.63 e Å3
44 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.33330.66670.75000.0200 (8)
S10.33330.66670.25000.0332 (10)
O10.489 (3)0.813 (4)0.186 (2)0.051 (4)0.220 (12)
O20.489 (3)0.721 (6)0.163 (3)0.051 (4)0.210 (13)
O30.373 (6)0.799 (3)0.146 (3)0.051 (4)0.203 (14)
O40.33330.66670.114 (9)0.051 (4)0.10 (2)
N10.3136 (7)0.4590 (8)0.8712 (6)0.0427 (14)
H1A0.40720.44790.85810.051*
H1B0.30700.47910.96210.051*
C10.1570 (9)0.3007 (9)0.8275 (8)0.0491 (18)
H1C0.05610.29600.86920.059*
H1D0.16260.20020.85780.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0208 (9)0.0208 (9)0.0184 (12)0.0104 (5)0.0000.000
S10.0327 (13)0.0327 (13)0.034 (2)0.0163 (7)0.0000.000
O10.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O20.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O30.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O40.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
N10.041 (3)0.051 (3)0.040 (3)0.026 (3)0.008 (2)0.000 (2)
C10.051 (4)0.053 (4)0.054 (4)0.035 (3)0.002 (3)0.006 (3)
Geometric parameters (Å, º) top
Mn1—N1i2.125 (6)S1—O2iii1.48 (3)
Mn1—N1ii2.125 (6)S1—O2vii1.48 (3)
Mn1—N1iii2.125 (6)S1—O2viii1.48 (3)
Mn1—N1iv2.125 (6)S1—O2ii1.48 (3)
Mn1—N1v2.125 (6)O1—O1viii1.74 (5)
Mn1—N12.125 (6)O2—O2viii1.72 (6)
S1—O41.30 (9)O3—O3iii1.82 (4)
S1—O4vi1.30 (9)O3—O3ii1.82 (4)
S1—O3vii1.45 (3)N1—C11.471 (9)
S1—O3iii1.45 (3)N1—H1A0.9000
S1—O31.45 (3)N1—H1B0.9000
S1—O3vi1.45 (3)C1—C1iv1.496 (15)
S1—O3ii1.45 (3)C1—H1C0.9700
S1—O3viii1.45 (3)C1—H1D0.9700
N1i—Mn1—N1ii81.6 (3)O3ii—S1—O2iii99.3 (13)
N1i—Mn1—N1iii93.5 (3)O3viii—S1—O2iii170.3 (17)
N1ii—Mn1—N1iii92.7 (2)O4—S1—O2vii124.3 (10)
N1i—Mn1—N1iv92.7 (2)O4vi—S1—O2vii55.7 (10)
N1ii—Mn1—N1iv93.5 (3)O3vii—S1—O2vii62.4 (15)
N1iii—Mn1—N1iv171.8 (3)O3iii—S1—O2vii97 (2)
N1i—Mn1—N1v92.7 (2)O3—S1—O2vii94 (3)
N1ii—Mn1—N1v171.8 (3)O3vi—S1—O2vii30.1 (12)
N1iii—Mn1—N1v81.6 (3)O3ii—S1—O2vii170.3 (17)
N1iv—Mn1—N1v92.7 (2)O3viii—S1—O2vii99.3 (13)
N1i—Mn1—N1171.8 (3)O2iii—S1—O2vii71 (2)
N1ii—Mn1—N192.7 (2)O4—S1—O2viii124.3 (11)
N1iii—Mn1—N192.7 (2)O4vi—S1—O2viii55.7 (10)
N1iv—Mn1—N181.6 (3)O3vii—S1—O2viii30.1 (12)
N1v—Mn1—N193.5 (3)O3iii—S1—O2viii170.3 (18)
O4—S1—O4vi180.000 (19)O3—S1—O2viii97 (2)
O4—S1—O3vii133.7 (10)O3vi—S1—O2viii99.3 (13)
O4vi—S1—O3vii46.3 (10)O3ii—S1—O2viii94 (3)
O4—S1—O3iii46.3 (10)O3viii—S1—O2viii62.4 (15)
O4vi—S1—O3iii133.7 (10)O2iii—S1—O2viii116 (3)
O3vii—S1—O3iii156 (4)O2vii—S1—O2viii91.3 (15)
O4—S1—O346.3 (10)O4—S1—O2ii55.7 (10)
O4vi—S1—O3133.7 (10)O4vi—S1—O2ii124.3 (10)
O3vii—S1—O390 (2)O3vii—S1—O2ii170.3 (17)
O3iii—S1—O377.5 (15)O3iii—S1—O2ii30.1 (12)
O4—S1—O3vi133.7 (10)O3—S1—O2ii99.3 (13)
O4vi—S1—O3vi46.3 (10)O3vi—S1—O2ii97 (2)
O3vii—S1—O3vi77.5 (15)O3ii—S1—O2ii62.4 (15)
O3iii—S1—O3vi90 (2)O3viii—S1—O2ii94 (3)
O3—S1—O3vi121 (3)O2iii—S1—O2ii91.3 (15)
O4—S1—O3ii46.3 (10)O2vii—S1—O2ii116 (3)
O4vi—S1—O3ii133.7 (10)O2viii—S1—O2ii147 (4)
O3vii—S1—O3ii121 (3)S1—O1—O1viii54.1 (11)
O3iii—S1—O3ii77.5 (15)S1—O2—O2viii54.5 (12)
O3—S1—O3ii77.5 (15)S1—O3—O3iii51.2 (7)
O3vi—S1—O3ii156 (4)S1—O3—O3ii51.2 (7)
O4—S1—O3viii133.7 (10)O3iii—O3—O3ii60.000 (1)
O4vi—S1—O3viii46.3 (10)C1—N1—Mn1107.9 (4)
O3vii—S1—O3viii77.5 (15)C1—N1—H1A110.1
O3iii—S1—O3viii121 (3)Mn1—N1—H1A110.1
O3—S1—O3viii156 (4)C1—N1—H1B110.1
O3vi—S1—O3viii77.5 (15)Mn1—N1—H1B110.1
O3ii—S1—O3viii90 (2)H1A—N1—H1B108.4
O4—S1—O2iii55.7 (10)N1—C1—C1iv108.9 (5)
O4vi—S1—O2iii124.3 (10)N1—C1—H1C109.9
O3vii—S1—O2iii97 (2)C1iv—C1—H1C109.9
O3iii—S1—O2iii62.4 (15)N1—C1—H1D109.9
O3—S1—O2iii30.1 (12)C1iv—C1—H1D109.9
O3vi—S1—O2iii94 (3)H1C—C1—H1D108.3
O4—S1—O1—O1viii129 (2)O3vii—S1—O3—O3iii159 (3)
O4vi—S1—O1—O1viii51 (2)O3vi—S1—O3—O3iii83 (2)
O3vii—S1—O1—O1viii65.8 (19)O3ii—S1—O3—O3iii79.8 (10)
O3iii—S1—O1—O1viii140 (3)O3viii—S1—O3—O3iii141.8 (18)
O3—S1—O1—O1viii179 (3)O2iii—S1—O3—O3iii55 (3)
O3vi—S1—O1—O1viii100 (3)O2vii—S1—O3—O3iii96 (3)
O3ii—S1—O1—O1viii77 (2)O2viii—S1—O3—O3iii172 (3)
O3viii—S1—O1—O1viii0 (2)O2ii—S1—O3—O3iii20.9 (16)
O2iii—S1—O1—O1viii171 (2)O4—S1—O3—O3ii39.9 (5)
O2vii—S1—O1—O1viii112.2 (18)O4vi—S1—O3—O3ii140.1 (5)
O2viii—S1—O1—O1viii34.5 (19)O3vii—S1—O3—O3ii122 (4)
O2ii—S1—O1—O1viii108 (3)O3iii—S1—O3—O3ii79.8 (10)
O4—S1—O2—O2viii163 (4)O3vi—S1—O3—O3ii163 (2)
O4vi—S1—O2—O2viii17 (4)O3viii—S1—O3—O3ii62 (2)
O3vii—S1—O2—O2viii20 (2)O2iii—S1—O3—O3ii135 (3)
O3iii—S1—O2—O2viii179 (4)O2vii—S1—O3—O3ii176 (3)
O3—S1—O2—O2viii109 (4)O2viii—S1—O3—O3ii92 (3)
O3vi—S1—O2—O2viii3 (22)O2ii—S1—O3—O3ii58.9 (16)
O3ii—S1—O2—O2viii136 (5)N1i—Mn1—N1—C132.2 (4)
O3viii—S1—O2—O2viii58 (2)N1ii—Mn1—N1—C178.5 (5)
O2iii—S1—O2—O2viii117 (4)N1iii—Mn1—N1—C1171.4 (4)
O2vii—S1—O2—O2viii61 (2)N1iv—Mn1—N1—C114.7 (3)
O2ii—S1—O2—O2viii151 (4)N1v—Mn1—N1—C1106.9 (4)
O4—S1—O3—O3iii39.9 (5)Mn1—N1—C1—C1iv41.5 (7)
O4vi—S1—O3—O3iii140.1 (5)
Symmetry codes: (i) x, xy+1, z+3/2; (ii) x+y, x+1, z; (iii) y+1, xy+1, z; (iv) x+y, y, z+3/2; (v) y+1, x+1, z+3/2; (vi) y+1, x+1, z+1/2; (vii) x+y, y, z+1/2; (viii) x, xy+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ix0.902.283.16 (3)166
N1—H1A···O1x0.902.433.15 (3)138
N1—H1B···O1xi0.902.173.06 (2)170
N1—H1B···O2xi0.902.113.00 (2)167
N1—H1A···O2xii0.902.142.95 (5)148
N1—H1A···O3ix0.901.922.80 (3)166
N1—H1B···O3xi0.902.152.96 (3)150
N1—H1B···O3xiii0.902.363.18 (3)152
N1—H1B···O4xiv0.902.152.94 (7)146
Symmetry codes: (ix) xy+1, x, z+1; (x) x+1, x+y, z+1/2; (xi) x+y, x+1, z+1; (xii) x+1, y+1, z+1; (xiii) y+1, xy+1, z+1; (xiv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C2H8N2)3]SO4
Mr331.31
Crystal system, space groupTrigonal, P31c
Temperature (K)293
a, c (Å)8.9460 (13), 9.6230 (19)
V3)666.96 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.35 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.686, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
2640, 402, 386
Rint0.031
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.159, 1.55
No. of reflections402
No. of parameters44
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.63

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—N12.125 (6)
N1i—Mn1—N181.6 (3)
Symmetry code: (i) x+y, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.902.283.16 (3)166
N1—H1A···O1iii0.902.433.15 (3)138
N1—H1B···O1iv0.902.173.06 (2)170
N1—H1B···O2iv0.902.113.00 (2)167
N1—H1A···O2v0.902.142.95 (5)148
N1—H1A···O3ii0.901.922.80 (3)166
N1—H1B···O3iv0.902.152.96 (3)150
N1—H1B···O3vi0.902.363.18 (3)152
N1—H1B···O4vii0.902.152.94 (7)146
Symmetry codes: (ii) xy+1, x, z+1; (iii) x+1, x+y, z+1/2; (iv) x+y, x+1, z+1; (v) x+1, y+1, z+1; (vi) y+1, xy+1, z+1; (vii) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20671048) and the Doctoral Foundation of Liaocheng University (No. 31805).

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864.  CSD CrossRef CAS Web of Science Google Scholar
First citationDaniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationJameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016–3020.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShang, S.-M., Ren, C.-X., Wang, X., Lu, L.-D. & Yang, X.-J. (2009). Acta Cryst. E65, m1023–m1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds