metal-organic compounds
Retracted: Tris(ethylenediamine)manganese(II) sulfate
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lujing@lcu.edu.cn
In the title compound, [Mn(C2H8N2)3]SO4, the metal atom (site symmetry 3.2) is coordinated by six N atoms from three ethylenediamine (en) ligands in a slightly distorted octahedral geometry. The en ligands are generated from one half-molecule in the The O atoms of the sulfate anion (S 3.2) are disordered over four orientations in a 0.220 (12):0.210 (13):0.203 (14):0.10 (2) ratio, with one of the O atoms having 3. In the crystal, the ions are connected by N—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For a structure containing MnII and aromatic amine ligands, see: Shang et al. (2009). For other compounds containing transition metals coordinated by ethylenediamine, see: Cullen & Lingafelter (1970); Daniels et al. (1995); Jameson et al. (1982).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809034874/hb5060sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034874/hb5060Isup2.hkl
Manganese sulfate (0.2 mmol) and malic acid (0.4 mmol) were added to water (15 ml). The pH value was adjusted to 9 by en. Violet blocks of (I) were obtained after several days in 30% yield. Elemental analysis, Found:C, 21.73; H, 7.24; N, 25.35%. Calc. for C6H24N6MnSO4: C, 21.20; H, 7.00; N, 24.93%.
All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H 0.970 and N—H 0.900 Å, and with Uiso(H) = 1.2Ueq(C,N). The O atoms are resolved into four positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands SUMP, SIMU and EADP.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. The symmetry codes for N and C atoms: A -y+1, x-y+1, z; B -x+y, -x+1, z; C -y+1, -x+1, -z+3/2; D -x+y, y, -z+3/2; E x, x-y+1, -z+3/2. |
[Mn(C2H8N2)3]SO4 | Dx = 1.650 Mg m−3 |
Mr = 331.31 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P31c | Cell parameters from 2640 reflections |
a = 8.9460 (13) Å | θ = 2.6–25.0° |
c = 9.6230 (19) Å | µ = 1.17 mm−1 |
V = 666.96 (19) Å3 | T = 293 K |
Z = 2 | Block, violet |
F(000) = 350 | 0.35 × 0.30 × 0.28 mm |
Bruker SMART CCD diffractometer | 402 independent reflections |
Radiation source: fine-focus sealed tube | 386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −8→10 |
Tmin = 0.686, Tmax = 0.736 | k = −10→4 |
2640 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.0637P)2 + 1.2291P] where P = (Fo2 + 2Fc2)/3 |
S = 1.55 | (Δ/σ)max = 0.001 |
402 reflections | Δρmax = 0.72 e Å−3 |
44 parameters | Δρmin = −0.63 e Å−3 |
2 restraints | Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.051 (15) |
[Mn(C2H8N2)3]SO4 | Z = 2 |
Mr = 331.31 | Mo Kα radiation |
Trigonal, P31c | µ = 1.17 mm−1 |
a = 8.9460 (13) Å | T = 293 K |
c = 9.6230 (19) Å | 0.35 × 0.30 × 0.28 mm |
V = 666.96 (19) Å3 |
Bruker SMART CCD diffractometer | 402 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 386 reflections with I > 2σ(I) |
Tmin = 0.686, Tmax = 0.736 | Rint = 0.031 |
2640 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 2 restraints |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.55 | Δρmax = 0.72 e Å−3 |
402 reflections | Δρmin = −0.63 e Å−3 |
44 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.3333 | 0.6667 | 0.7500 | 0.0200 (8) | |
S1 | 0.3333 | 0.6667 | 0.2500 | 0.0332 (10) | |
O1 | 0.489 (3) | 0.813 (4) | 0.186 (2) | 0.051 (4) | 0.220 (12) |
O2 | 0.489 (3) | 0.721 (6) | 0.163 (3) | 0.051 (4) | 0.210 (13) |
O3 | 0.373 (6) | 0.799 (3) | 0.146 (3) | 0.051 (4) | 0.203 (14) |
O4 | 0.3333 | 0.6667 | 0.114 (9) | 0.051 (4) | 0.10 (2) |
N1 | 0.3136 (7) | 0.4590 (8) | 0.8712 (6) | 0.0427 (14) | |
H1A | 0.4072 | 0.4479 | 0.8581 | 0.051* | |
H1B | 0.3070 | 0.4791 | 0.9621 | 0.051* | |
C1 | 0.1570 (9) | 0.3007 (9) | 0.8275 (8) | 0.0491 (18) | |
H1C | 0.0561 | 0.2960 | 0.8692 | 0.059* | |
H1D | 0.1626 | 0.2002 | 0.8578 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0208 (9) | 0.0208 (9) | 0.0184 (12) | 0.0104 (5) | 0.000 | 0.000 |
S1 | 0.0327 (13) | 0.0327 (13) | 0.034 (2) | 0.0163 (7) | 0.000 | 0.000 |
O1 | 0.045 (8) | 0.042 (12) | 0.047 (7) | 0.008 (10) | 0.007 (6) | 0.000 (8) |
O2 | 0.045 (8) | 0.042 (12) | 0.047 (7) | 0.008 (10) | 0.007 (6) | 0.000 (8) |
O3 | 0.045 (8) | 0.042 (12) | 0.047 (7) | 0.008 (10) | 0.007 (6) | 0.000 (8) |
O4 | 0.045 (8) | 0.042 (12) | 0.047 (7) | 0.008 (10) | 0.007 (6) | 0.000 (8) |
N1 | 0.041 (3) | 0.051 (3) | 0.040 (3) | 0.026 (3) | 0.008 (2) | 0.000 (2) |
C1 | 0.051 (4) | 0.053 (4) | 0.054 (4) | 0.035 (3) | 0.002 (3) | −0.006 (3) |
Mn1—N1i | 2.125 (6) | S1—O2iii | 1.48 (3) |
Mn1—N1ii | 2.125 (6) | S1—O2vii | 1.48 (3) |
Mn1—N1iii | 2.125 (6) | S1—O2viii | 1.48 (3) |
Mn1—N1iv | 2.125 (6) | S1—O2ii | 1.48 (3) |
Mn1—N1v | 2.125 (6) | O1—O1viii | 1.74 (5) |
Mn1—N1 | 2.125 (6) | O2—O2viii | 1.72 (6) |
S1—O4 | 1.30 (9) | O3—O3iii | 1.82 (4) |
S1—O4vi | 1.30 (9) | O3—O3ii | 1.82 (4) |
S1—O3vii | 1.45 (3) | N1—C1 | 1.471 (9) |
S1—O3iii | 1.45 (3) | N1—H1A | 0.9000 |
S1—O3 | 1.45 (3) | N1—H1B | 0.9000 |
S1—O3vi | 1.45 (3) | C1—C1iv | 1.496 (15) |
S1—O3ii | 1.45 (3) | C1—H1C | 0.9700 |
S1—O3viii | 1.45 (3) | C1—H1D | 0.9700 |
N1i—Mn1—N1ii | 81.6 (3) | O3ii—S1—O2iii | 99.3 (13) |
N1i—Mn1—N1iii | 93.5 (3) | O3viii—S1—O2iii | 170.3 (17) |
N1ii—Mn1—N1iii | 92.7 (2) | O4—S1—O2vii | 124.3 (10) |
N1i—Mn1—N1iv | 92.7 (2) | O4vi—S1—O2vii | 55.7 (10) |
N1ii—Mn1—N1iv | 93.5 (3) | O3vii—S1—O2vii | 62.4 (15) |
N1iii—Mn1—N1iv | 171.8 (3) | O3iii—S1—O2vii | 97 (2) |
N1i—Mn1—N1v | 92.7 (2) | O3—S1—O2vii | 94 (3) |
N1ii—Mn1—N1v | 171.8 (3) | O3vi—S1—O2vii | 30.1 (12) |
N1iii—Mn1—N1v | 81.6 (3) | O3ii—S1—O2vii | 170.3 (17) |
N1iv—Mn1—N1v | 92.7 (2) | O3viii—S1—O2vii | 99.3 (13) |
N1i—Mn1—N1 | 171.8 (3) | O2iii—S1—O2vii | 71 (2) |
N1ii—Mn1—N1 | 92.7 (2) | O4—S1—O2viii | 124.3 (11) |
N1iii—Mn1—N1 | 92.7 (2) | O4vi—S1—O2viii | 55.7 (10) |
N1iv—Mn1—N1 | 81.6 (3) | O3vii—S1—O2viii | 30.1 (12) |
N1v—Mn1—N1 | 93.5 (3) | O3iii—S1—O2viii | 170.3 (18) |
O4—S1—O4vi | 180.000 (19) | O3—S1—O2viii | 97 (2) |
O4—S1—O3vii | 133.7 (10) | O3vi—S1—O2viii | 99.3 (13) |
O4vi—S1—O3vii | 46.3 (10) | O3ii—S1—O2viii | 94 (3) |
O4—S1—O3iii | 46.3 (10) | O3viii—S1—O2viii | 62.4 (15) |
O4vi—S1—O3iii | 133.7 (10) | O2iii—S1—O2viii | 116 (3) |
O3vii—S1—O3iii | 156 (4) | O2vii—S1—O2viii | 91.3 (15) |
O4—S1—O3 | 46.3 (10) | O4—S1—O2ii | 55.7 (10) |
O4vi—S1—O3 | 133.7 (10) | O4vi—S1—O2ii | 124.3 (10) |
O3vii—S1—O3 | 90 (2) | O3vii—S1—O2ii | 170.3 (17) |
O3iii—S1—O3 | 77.5 (15) | O3iii—S1—O2ii | 30.1 (12) |
O4—S1—O3vi | 133.7 (10) | O3—S1—O2ii | 99.3 (13) |
O4vi—S1—O3vi | 46.3 (10) | O3vi—S1—O2ii | 97 (2) |
O3vii—S1—O3vi | 77.5 (15) | O3ii—S1—O2ii | 62.4 (15) |
O3iii—S1—O3vi | 90 (2) | O3viii—S1—O2ii | 94 (3) |
O3—S1—O3vi | 121 (3) | O2iii—S1—O2ii | 91.3 (15) |
O4—S1—O3ii | 46.3 (10) | O2vii—S1—O2ii | 116 (3) |
O4vi—S1—O3ii | 133.7 (10) | O2viii—S1—O2ii | 147 (4) |
O3vii—S1—O3ii | 121 (3) | S1—O1—O1viii | 54.1 (11) |
O3iii—S1—O3ii | 77.5 (15) | S1—O2—O2viii | 54.5 (12) |
O3—S1—O3ii | 77.5 (15) | S1—O3—O3iii | 51.2 (7) |
O3vi—S1—O3ii | 156 (4) | S1—O3—O3ii | 51.2 (7) |
O4—S1—O3viii | 133.7 (10) | O3iii—O3—O3ii | 60.000 (1) |
O4vi—S1—O3viii | 46.3 (10) | C1—N1—Mn1 | 107.9 (4) |
O3vii—S1—O3viii | 77.5 (15) | C1—N1—H1A | 110.1 |
O3iii—S1—O3viii | 121 (3) | Mn1—N1—H1A | 110.1 |
O3—S1—O3viii | 156 (4) | C1—N1—H1B | 110.1 |
O3vi—S1—O3viii | 77.5 (15) | Mn1—N1—H1B | 110.1 |
O3ii—S1—O3viii | 90 (2) | H1A—N1—H1B | 108.4 |
O4—S1—O2iii | 55.7 (10) | N1—C1—C1iv | 108.9 (5) |
O4vi—S1—O2iii | 124.3 (10) | N1—C1—H1C | 109.9 |
O3vii—S1—O2iii | 97 (2) | C1iv—C1—H1C | 109.9 |
O3iii—S1—O2iii | 62.4 (15) | N1—C1—H1D | 109.9 |
O3—S1—O2iii | 30.1 (12) | C1iv—C1—H1D | 109.9 |
O3vi—S1—O2iii | 94 (3) | H1C—C1—H1D | 108.3 |
O4—S1—O1—O1viii | −129 (2) | O3vii—S1—O3—O3iii | −159 (3) |
O4vi—S1—O1—O1viii | 51 (2) | O3vi—S1—O3—O3iii | −83 (2) |
O3vii—S1—O1—O1viii | 65.8 (19) | O3ii—S1—O3—O3iii | 79.8 (10) |
O3iii—S1—O1—O1viii | −140 (3) | O3viii—S1—O3—O3iii | 141.8 (18) |
O3—S1—O1—O1viii | 179 (3) | O2iii—S1—O3—O3iii | −55 (3) |
O3vi—S1—O1—O1viii | 100 (3) | O2vii—S1—O3—O3iii | −96 (3) |
O3ii—S1—O1—O1viii | −77 (2) | O2viii—S1—O3—O3iii | 172 (3) |
O3viii—S1—O1—O1viii | 0 (2) | O2ii—S1—O3—O3iii | 20.9 (16) |
O2iii—S1—O1—O1viii | 171 (2) | O4—S1—O3—O3ii | −39.9 (5) |
O2vii—S1—O1—O1viii | 112.2 (18) | O4vi—S1—O3—O3ii | 140.1 (5) |
O2viii—S1—O1—O1viii | 34.5 (19) | O3vii—S1—O3—O3ii | 122 (4) |
O2ii—S1—O1—O1viii | −108 (3) | O3iii—S1—O3—O3ii | −79.8 (10) |
O4—S1—O2—O2viii | 163 (4) | O3vi—S1—O3—O3ii | −163 (2) |
O4vi—S1—O2—O2viii | −17 (4) | O3viii—S1—O3—O3ii | 62 (2) |
O3vii—S1—O2—O2viii | 20 (2) | O2iii—S1—O3—O3ii | −135 (3) |
O3iii—S1—O2—O2viii | 179 (4) | O2vii—S1—O3—O3ii | −176 (3) |
O3—S1—O2—O2viii | 109 (4) | O2viii—S1—O3—O3ii | 92 (3) |
O3vi—S1—O2—O2viii | −3 (22) | O2ii—S1—O3—O3ii | −58.9 (16) |
O3ii—S1—O2—O2viii | −136 (5) | N1i—Mn1—N1—C1 | 32.2 (4) |
O3viii—S1—O2—O2viii | −58 (2) | N1ii—Mn1—N1—C1 | 78.5 (5) |
O2iii—S1—O2—O2viii | 117 (4) | N1iii—Mn1—N1—C1 | 171.4 (4) |
O2vii—S1—O2—O2viii | 61 (2) | N1iv—Mn1—N1—C1 | −14.7 (3) |
O2ii—S1—O2—O2viii | −151 (4) | N1v—Mn1—N1—C1 | −106.9 (4) |
O4—S1—O3—O3iii | 39.9 (5) | Mn1—N1—C1—C1iv | 41.5 (7) |
O4vi—S1—O3—O3iii | −140.1 (5) |
Symmetry codes: (i) x, x−y+1, −z+3/2; (ii) −x+y, −x+1, z; (iii) −y+1, x−y+1, z; (iv) −x+y, y, −z+3/2; (v) −y+1, −x+1, −z+3/2; (vi) −y+1, −x+1, −z+1/2; (vii) −x+y, y, −z+1/2; (viii) x, x−y+1, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ix | 0.90 | 2.28 | 3.16 (3) | 166 |
N1—H1A···O1x | 0.90 | 2.43 | 3.15 (3) | 138 |
N1—H1B···O1xi | 0.90 | 2.17 | 3.06 (2) | 170 |
N1—H1B···O2xi | 0.90 | 2.11 | 3.00 (2) | 167 |
N1—H1A···O2xii | 0.90 | 2.14 | 2.95 (5) | 148 |
N1—H1A···O3ix | 0.90 | 1.92 | 2.80 (3) | 166 |
N1—H1B···O3xi | 0.90 | 2.15 | 2.96 (3) | 150 |
N1—H1B···O3xiii | 0.90 | 2.36 | 3.18 (3) | 152 |
N1—H1B···O4xiv | 0.90 | 2.15 | 2.94 (7) | 146 |
Symmetry codes: (ix) x−y+1, x, −z+1; (x) −x+1, −x+y, z+1/2; (xi) −x+y, −x+1, z+1; (xii) −x+1, −y+1, −z+1; (xiii) −y+1, x−y+1, z+1; (xiv) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C2H8N2)3]SO4 |
Mr | 331.31 |
Crystal system, space group | Trigonal, P31c |
Temperature (K) | 293 |
a, c (Å) | 8.9460 (13), 9.6230 (19) |
V (Å3) | 666.96 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.35 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.686, 0.736 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2640, 402, 386 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.159, 1.55 |
No. of reflections | 402 |
No. of parameters | 44 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.63 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Mn1—N1 | 2.125 (6) | ||
N1i—Mn1—N1 | 81.6 (3) |
Symmetry code: (i) −x+y, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.90 | 2.28 | 3.16 (3) | 166 |
N1—H1A···O1iii | 0.90 | 2.43 | 3.15 (3) | 138 |
N1—H1B···O1iv | 0.90 | 2.17 | 3.06 (2) | 170 |
N1—H1B···O2iv | 0.90 | 2.11 | 3.00 (2) | 167 |
N1—H1A···O2v | 0.90 | 2.14 | 2.95 (5) | 148 |
N1—H1A···O3ii | 0.90 | 1.92 | 2.80 (3) | 166 |
N1—H1B···O3iv | 0.90 | 2.15 | 2.96 (3) | 150 |
N1—H1B···O3vi | 0.90 | 2.36 | 3.18 (3) | 152 |
N1—H1B···O4vii | 0.90 | 2.15 | 2.94 (7) | 146 |
Symmetry codes: (ii) x−y+1, x, −z+1; (iii) −x+1, −x+y, z+1/2; (iv) −x+y, −x+1, z+1; (v) −x+1, −y+1, −z+1; (vi) −y+1, x−y+1, z+1; (vii) x, y, z+1. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 20671048) and the Doctoral Foundation of Liaocheng University (No. 31805).
References
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864. CSD CrossRef CAS Web of Science Google Scholar
Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32. CSD CrossRef CAS Web of Science Google Scholar
Jameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016–3020. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Shang, S.-M., Ren, C.-X., Wang, X., Lu, L.-D. & Yang, X.-J. (2009). Acta Cryst. E65, m1023–m1024. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ethylenediamine (en) ligand has been seen in a number of coordination compound (Cullen et al., 1970; Daniels et al., 1995 and Jameson et al., 1982), because it can not only chelate metal center by two nitrogen atoms, but also offer hydrogen atoms to form N—H···X hydrogen bonds. In this paper, we report the structure of the title compound, (I).
In the title compound (Fig. 1), [Mn(C2H8N2)3]SO4, the cation and anion are situated on a sixfold rotation axis. The Mn(II) is coordinated by six N atoms from three en ligands in a distorted octahedral geometry. The Mn—N bond length is 2.129 Å, which is shorter than the distance between Mn(II) and aromatic nitrogen atom (Shang et al., 2009). The O atoms of the sulfate anions are disordered. The disordered anions hydrogen bond with the coordination cations by N—H···O hydrogen bonds, forming three-dimensional supramolecular network. The hydrogen bond is listed in table 1.