organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium 2,4-di­nitro­phenyl­barbiturate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 21 August 2009; accepted 12 September 2009; online 26 September 2009)

In the title mol­ecular salt [systematic name: triethylammonium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrim­idin-4-olate], C6H16N+·C10H5N4O7, the cation and anion are linked by an N—H⋯O hydrogen bond. In the crystal, inversion-related barbiturate rings are centrosymmetrically connected through pairs of N—H⋯O hydrogen bonds, forming R22(8)R22(8) ring motifs.

Related literature

For further information on the anti­convulsant properties of the title compound and general background, see: Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]). For a related structure, see: Craven (1964[Craven, B. M. (1964). Acta Cryst. 17, 282-289.]). For data on hydrogen-bond motifs in organic crystals, see: Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C10H5N4O7

  • Mr = 395.38

  • Monoclinic, C 2/c

  • a = 29.7900 (8) Å

  • b = 10.4533 (3) Å

  • c = 11.9606 (3) Å

  • β = 97.903 (1)°

  • V = 3689.20 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.971

  • 32882 measured reflections

  • 3217 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.04

  • 3217 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.02 (2) 2.861 (2) 177 (2)
N2—H2⋯O3ii 0.82 (2) 2.10 (2) 2.918 (2) 172 (2)
N5—H5⋯O2 0.85 (2) 1.88 (2) 2.730 (2) 172 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altornare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have recently prepared the title compound, (I), which has anticonvulsant activity (Kalaivani et al., 2008). We now report its crystal structure.

ORTEP view of the title compound is shown in Fig. 1. The presence of the leaving group (chlorine atom) para with respect to the nitrogroup of the starting molecule (1 – chloro – 2,4 – dinitrobenzene) facilitates the formation of the title compound in the presence of barbituric acid and triethylamine. Absence of chlorine atom, as indicated by the qualitative test on the synthesized barbirutrate has been supported by the crystallographic data. The title molecule is coloured red and it has been attributed to the delocalization of negative charge (Kalaivani et al., 2008) which has also been substantiated by the bond angles and bond lengths of single-crystal X-ray data of 2,4-dinitrophenyl and barbiturate rings. The bond angles and bond lengths of barbiturate residue of the title molecule are compatible with that of barbiturate ion (Craven, 1964), evidencing the delocalization of negative charge in the barbiturate ring.

Presence of double bond (delocalized) between C3 and C5 atoms fixes the configuration of the molecule as depicted in Fig. 1. The N5—H5···O2 hydrogen bond between the asymmetric units is the main driving force for the orientation of the triethylammonium cation (Fig. 2). Two inversion related barbiturate anions interact through a pair of N—H···O=C hydrogen bonds involving N1—H1 atoms and the carbonyl oxygen atom (O1) forming a R22(8) ring motif. The same ring motif is also due to a pair of N—H···O hydrogen bonds involving N2—H2 atoms and the carbonyl oxygen atom (O3). This motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The hydrogen bonds observed in the title molecule are mainly responsible for its stability. The high solubility of the title drug molecule in water (4 g cc-1 at 298 K) is due to the positively charged triethylammonium cation and negatively charged 2,4-dinitrophenylbarbiturate anion of the asymmetric unit.

Related literature top

For further information on the anticonvulsant properties of the title compound and general background, see: Kalaivani et al. (2008). For a related structure, see: Craven (1964). For data on hydrogen-bond motifs in organic crystals, see: Allen et al. (1998).

Experimental top

The title compound was prepared as described previously (Kalaivani et al., 2008) and recrystallized from absolute ethanol to yield maroon blocks of (I).

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altornare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Packing view of (I).
Triethylammonium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C6H16N+·C10H5N4O7F(000) = 1664
Mr = 395.38Dx = 1.424 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8875 reflections
a = 29.7900 (8) Åθ = 2.5–24.5°
b = 10.4533 (3) ŵ = 0.11 mm1
c = 11.9606 (3) ÅT = 293 K
β = 97.903 (1)°Block, maroon
V = 3689.20 (17) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3217 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 24.9°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3535
Tmin = 0.942, Tmax = 0.971k = 1212
32882 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 3.5895P]
where P = (Fo2 + 2Fc2)/3
3217 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C6H16N+·C10H5N4O7V = 3689.20 (17) Å3
Mr = 395.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.7900 (8) ŵ = 0.11 mm1
b = 10.4533 (3) ÅT = 293 K
c = 11.9606 (3) Å0.30 × 0.20 × 0.20 mm
β = 97.903 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2493 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.971Rint = 0.036
32882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
3217 reflectionsΔρmin = 0.19 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49607 (6)0.30537 (17)0.47768 (17)0.0402 (5)
C20.43235 (6)0.33505 (16)0.32947 (15)0.0336 (4)
C30.42904 (6)0.20117 (16)0.31524 (15)0.0339 (4)
C40.45876 (6)0.11860 (16)0.38266 (15)0.0348 (4)
C50.39223 (6)0.15178 (15)0.23248 (14)0.0321 (4)
C60.34717 (6)0.18925 (16)0.22995 (14)0.0317 (4)
C70.31314 (6)0.15443 (17)0.14568 (15)0.0372 (4)
H70.28350.18200.14630.045*
C80.32439 (6)0.07760 (17)0.06070 (15)0.0371 (4)
C90.36810 (7)0.03485 (18)0.05876 (16)0.0408 (5)
H90.37510.01730.00060.049*
C100.40118 (7)0.07127 (17)0.14501 (16)0.0387 (5)
H100.43050.04110.14490.046*
C110.39539 (7)0.7557 (2)0.27509 (19)0.0498 (5)
H11A0.41260.76590.34950.060*
H11B0.37790.83310.25770.060*
C120.42740 (9)0.7390 (3)0.1905 (2)0.0700 (7)
H12A0.44250.65800.20220.105*
H12B0.44950.80650.19910.105*
H12C0.41090.74190.11580.105*
C130.33902 (8)0.6466 (2)0.37901 (18)0.0570 (6)
H13A0.32680.73160.38770.068*
H13B0.31370.58770.36590.068*
C140.36764 (10)0.6107 (2)0.48412 (19)0.0702 (7)
H14A0.38030.52740.47570.105*
H14B0.34970.60920.54480.105*
H14C0.39160.67200.50060.105*
C150.33107 (7)0.6313 (2)0.17207 (18)0.0494 (5)
H15A0.31450.55210.17680.059*
H15B0.34780.62430.10830.059*
C160.29765 (8)0.7386 (3)0.1498 (2)0.0690 (7)
H16A0.27920.74240.20960.104*
H16B0.27870.72400.07930.104*
H16C0.31360.81790.14640.104*
N10.46707 (5)0.37959 (15)0.40826 (14)0.0416 (4)
N20.49133 (5)0.17742 (14)0.46111 (14)0.0387 (4)
N30.33250 (6)0.26868 (15)0.31972 (14)0.0414 (4)
N40.28841 (7)0.04383 (17)0.03058 (15)0.0515 (5)
N50.36397 (6)0.64590 (15)0.27695 (13)0.0387 (4)
O10.52439 (5)0.35119 (13)0.55104 (13)0.0575 (4)
O20.40649 (4)0.41466 (11)0.27608 (11)0.0425 (4)
O30.45764 (5)0.00016 (12)0.38115 (12)0.0496 (4)
O40.35005 (6)0.25162 (15)0.41664 (12)0.0582 (4)
O50.30234 (5)0.34649 (15)0.29215 (14)0.0582 (4)
O60.24947 (6)0.0672 (2)0.01885 (17)0.0964 (7)
O70.29920 (6)0.00325 (19)0.11540 (15)0.0808 (6)
H10.4688 (7)0.459 (2)0.4188 (17)0.046 (6)*
H20.5078 (7)0.133 (2)0.5064 (19)0.050 (6)*
H50.3796 (7)0.577 (2)0.2791 (17)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (10)0.0255 (9)0.0527 (12)0.0008 (8)0.0122 (9)0.0017 (8)
C20.0337 (10)0.0252 (9)0.0386 (10)0.0012 (7)0.0070 (8)0.0001 (7)
C30.0353 (10)0.0231 (9)0.0395 (10)0.0002 (7)0.0087 (8)0.0012 (7)
C40.0373 (10)0.0231 (9)0.0408 (10)0.0002 (7)0.0061 (8)0.0025 (7)
C50.0393 (10)0.0194 (8)0.0344 (10)0.0015 (7)0.0058 (8)0.0035 (7)
C60.0388 (10)0.0247 (9)0.0300 (9)0.0034 (7)0.0005 (8)0.0003 (7)
C70.0349 (10)0.0353 (10)0.0394 (11)0.0039 (8)0.0016 (8)0.0028 (8)
C80.0443 (11)0.0295 (9)0.0335 (10)0.0057 (8)0.0092 (8)0.0003 (8)
C90.0537 (12)0.0284 (9)0.0382 (10)0.0004 (9)0.0019 (9)0.0062 (8)
C100.0410 (11)0.0283 (9)0.0441 (11)0.0031 (8)0.0044 (9)0.0032 (8)
C110.0497 (13)0.0374 (11)0.0579 (13)0.0010 (9)0.0077 (10)0.0042 (10)
C120.0664 (16)0.0652 (16)0.0797 (18)0.0033 (13)0.0145 (14)0.0200 (14)
C130.0710 (15)0.0484 (13)0.0549 (14)0.0046 (11)0.0203 (12)0.0038 (11)
C140.107 (2)0.0575 (15)0.0484 (14)0.0062 (14)0.0207 (14)0.0066 (11)
C150.0528 (13)0.0432 (12)0.0495 (12)0.0039 (10)0.0029 (10)0.0025 (10)
C160.0522 (14)0.0725 (17)0.0766 (17)0.0098 (12)0.0119 (12)0.0106 (14)
N10.0444 (10)0.0180 (8)0.0554 (10)0.0014 (7)0.0185 (8)0.0011 (7)
N20.0391 (9)0.0227 (8)0.0480 (10)0.0024 (7)0.0161 (8)0.0015 (7)
N30.0436 (10)0.0370 (9)0.0435 (10)0.0082 (8)0.0053 (8)0.0049 (7)
N40.0576 (12)0.0441 (10)0.0466 (11)0.0041 (9)0.0151 (9)0.0070 (8)
N50.0508 (10)0.0255 (8)0.0392 (9)0.0094 (8)0.0041 (7)0.0014 (7)
O10.0558 (9)0.0284 (7)0.0756 (10)0.0022 (6)0.0366 (8)0.0024 (7)
O20.0464 (8)0.0225 (6)0.0522 (8)0.0041 (6)0.0162 (6)0.0014 (6)
O30.0594 (9)0.0205 (7)0.0600 (9)0.0023 (6)0.0234 (7)0.0011 (6)
O40.0764 (11)0.0639 (10)0.0330 (8)0.0074 (8)0.0031 (7)0.0084 (7)
O50.0499 (9)0.0512 (9)0.0730 (11)0.0085 (8)0.0067 (8)0.0125 (8)
O60.0495 (11)0.150 (2)0.0822 (14)0.0072 (12)0.0177 (10)0.0414 (13)
O70.0883 (13)0.0883 (14)0.0564 (11)0.0148 (11)0.0234 (9)0.0350 (10)
Geometric parameters (Å, º) top
C1—O11.228 (2)C12—H12A0.9600
C1—N21.357 (2)C12—H12B0.9600
C1—N11.357 (2)C12—H12C0.9600
C2—O21.248 (2)C13—C141.467 (3)
C2—N11.381 (2)C13—N51.514 (3)
C2—C31.412 (2)C13—H13A0.9700
C3—C41.408 (2)C13—H13B0.9700
C3—C51.466 (2)C14—H14A0.9600
C4—O31.242 (2)C14—H14B0.9600
C4—N21.396 (2)C14—H14C0.9600
C5—C61.395 (2)C15—N51.490 (2)
C5—C101.397 (3)C15—C161.498 (3)
C6—C71.377 (2)C15—H15A0.9700
C6—N31.471 (2)C15—H15B0.9700
C7—C81.373 (3)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—C91.380 (3)C16—H16C0.9600
C8—N41.464 (2)N1—H10.84 (2)
C9—C101.379 (3)N2—H20.82 (2)
C9—H90.9300N3—O41.217 (2)
C10—H100.9300N3—O51.223 (2)
C11—N51.483 (3)N4—O71.210 (2)
C11—C121.492 (3)N4—O61.212 (2)
C11—H11A0.9700N5—H50.85 (2)
C11—H11B0.9700
O1—C1—N2122.44 (17)C14—C13—N5113.4 (2)
O1—C1—N1122.11 (17)C14—C13—H13A108.9
N2—C1—N1115.45 (16)N5—C13—H13A108.9
O2—C2—N1118.42 (15)C14—C13—H13B108.9
O2—C2—C3124.84 (16)N5—C13—H13B108.9
N1—C2—C3116.74 (15)H13A—C13—H13B107.7
C4—C3—C2120.71 (16)C13—C14—H14A109.5
C4—C3—C5121.58 (15)C13—C14—H14B109.5
C2—C3—C5117.63 (15)H14A—C14—H14B109.5
O3—C4—N2117.69 (16)C13—C14—H14C109.5
O3—C4—C3126.22 (16)H14A—C14—H14C109.5
N2—C4—C3116.04 (15)H14B—C14—H14C109.5
C6—C5—C10115.80 (16)N5—C15—C16114.65 (18)
C6—C5—C3122.95 (16)N5—C15—H15A108.6
C10—C5—C3121.05 (17)C16—C15—H15A108.6
C7—C6—C5123.46 (16)N5—C15—H15B108.6
C7—C6—N3114.89 (16)C16—C15—H15B108.6
C5—C6—N3121.64 (15)H15A—C15—H15B107.6
C8—C7—C6117.81 (17)C15—C16—H16A109.5
C8—C7—H7121.1C15—C16—H16B109.5
C6—C7—H7121.1H16A—C16—H16B109.5
C7—C8—C9121.94 (16)C15—C16—H16C109.5
C7—C8—N4117.70 (18)H16A—C16—H16C109.5
C9—C8—N4120.34 (17)H16B—C16—H16C109.5
C10—C9—C8118.50 (17)C1—N1—C2125.39 (16)
C10—C9—H9120.8C1—N1—H1116.9 (14)
C8—C9—H9120.8C2—N1—H1117.4 (14)
C9—C10—C5122.44 (18)C1—N2—C4125.53 (16)
C9—C10—H10118.8C1—N2—H2114.8 (16)
C5—C10—H10118.8C4—N2—H2119.4 (16)
N5—C11—C12112.55 (18)O4—N3—O5123.88 (17)
N5—C11—H11A109.1O4—N3—C6118.73 (16)
C12—C11—H11A109.1O5—N3—C6117.36 (16)
N5—C11—H11B109.1O7—N4—O6123.20 (18)
C12—C11—H11B109.1O7—N4—C8118.14 (19)
H11A—C11—H11B107.8O6—N4—C8118.64 (19)
C11—C12—H12A109.5C11—N5—C15114.20 (16)
C11—C12—H12B109.5C11—N5—C13112.90 (17)
H12A—C12—H12B109.5C15—N5—C13109.90 (17)
C11—C12—H12C109.5C11—N5—H5107.9 (14)
H12A—C12—H12C109.5C15—N5—H5103.4 (14)
H12B—C12—H12C109.5C13—N5—H5107.9 (14)
O2—C2—C3—C4177.48 (19)C3—C5—C10—C9172.52 (17)
N1—C2—C3—C42.8 (3)O1—C1—N1—C2175.1 (2)
O2—C2—C3—C50.7 (3)N2—C1—N1—C24.3 (3)
N1—C2—C3—C5179.64 (17)O2—C2—N1—C1175.63 (19)
C2—C3—C4—O3176.4 (2)C3—C2—N1—C14.7 (3)
C5—C3—C4—O30.2 (3)O1—C1—N2—C4177.2 (2)
C2—C3—C4—N21.0 (3)N1—C1—N2—C42.2 (3)
C5—C3—C4—N2177.72 (17)O3—C4—N2—C1177.0 (2)
C4—C3—C5—C6126.7 (2)C3—C4—N2—C10.7 (3)
C2—C3—C5—C650.1 (3)C7—C6—N3—O4142.69 (17)
C4—C3—C5—C1058.6 (3)C5—C6—N3—O436.5 (2)
C2—C3—C5—C10124.63 (19)C7—C6—N3—O535.6 (2)
C10—C5—C6—C72.2 (3)C5—C6—N3—O5145.17 (17)
C3—C5—C6—C7172.76 (17)C7—C8—N4—O7166.62 (19)
C10—C5—C6—N3176.93 (15)C9—C8—N4—O712.1 (3)
C3—C5—C6—N38.1 (3)C7—C8—N4—O611.6 (3)
C5—C6—C7—C80.7 (3)C9—C8—N4—O6169.7 (2)
N3—C6—C7—C8178.44 (16)C12—C11—N5—C1566.8 (2)
C6—C7—C8—C90.5 (3)C12—C11—N5—C13166.72 (18)
C6—C7—C8—N4178.22 (16)C16—C15—N5—C1165.2 (3)
C7—C8—C9—C100.2 (3)C16—C15—N5—C1362.8 (2)
N4—C8—C9—C10178.53 (17)C14—C13—N5—C1173.7 (2)
C8—C9—C10—C51.4 (3)C14—C13—N5—C15157.55 (19)
C6—C5—C10—C92.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (2)2.02 (2)2.861 (2)177 (2)
N2—H2···O3ii0.82 (2)2.10 (2)2.918 (2)172 (2)
N5—H5···O20.85 (2)1.88 (2)2.730 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C10H5N4O7
Mr395.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)29.7900 (8), 10.4533 (3), 11.9606 (3)
β (°) 97.903 (1)
V3)3689.20 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.942, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
32882, 3217, 2493
Rint0.036
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections3217
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus/XPREP (Bruker, 2004), SIR92 (Altornare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (2)2.02 (2)2.861 (2)177 (2)
N2—H2···O3ii0.82 (2)2.10 (2)2.918 (2)172 (2)
N5—H5···O20.85 (2)1.88 (2)2.730 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are thankful to SAIF, IIT Madras, for the crystal data.

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraven, B. M. (1964). Acta Cryst. 17, 282–289.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds