metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[2-(4-bromo­phen­yl)acetato]bis­­(N4,N4-di­methyl­pyridin-4-amine)copper(II)

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 24 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title compound, [Cu(C8H6BrO2)2(C7H10N2)2(H2O)2], the CuII atom (site symmetry [\overline{1}]) adopts a Jahn–Teller-distorted trans-CuN2O4 octa­hedral coordination, with the aqua O atoms in axially extended sites. An intra­molecular O—H⋯O hydrogen bond helps to establish the conformation and an inter­molecular O—H⋯O hydrogen bond is seen in the crystal packing.

Related literature

For background to coordination networks, see: Liu & Zhu (2004[Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1866-m1868.]); Yang et al. (2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214.]); You et al. (2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863-m1865.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]

  • Mr = 771.99

  • Monoclinic, P 21 /c

  • a = 10.4792 (10) Å

  • b = 6.1059 (6) Å

  • c = 25.450 (2) Å

  • β = 100.958 (4)°

  • V = 1598.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.499, Tmax = 0.564

  • 8029 measured reflections

  • 2815 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.026

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.01

  • 2815 reflections

  • 198 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 2.0006 (17)
Cu1—N2 2.004 (2)
Cu1—O3 2.5052 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2i 0.90 2.03 2.901 (3) 161
O3—H3A⋯O1 0.92 1.79 2.688 (3) 163
Symmetry code: (i) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in the acid and amine metal complexes due to their molecular architectures (Liu et al., 2004; Yang et al., 2004; You et al., 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The CuII atom is six-coordinated by two N atoms from N,N-dimethylpyridin-4-amine, two O atoms from 2-(4-bromophenyl)acetic acid and two O atoms from the water molecules, forming a distorted octahedral coordination.

Related literature top

For background to coordination networks, see: Liu et al. (2004); Yang et al. (2004); You et al. (2004). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of N,N-dimethylpyridin-4-amine (244 mg, 2 mmol), 2-(4-bromophenyl)acetic acid (428 mg, 2 mmol) and CuCl2.2H2O (169 mg, 1 mmol) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1–x, 1–y, –z).
Diaquabis[2-(4-bromophenyl)acetato]bis(N4,N4- dimethylpyridin-4-amine)copper(II) top
Crystal data top
[Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]F(000) = 782
Mr = 771.99Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.4792 (10) Åθ = 9–12°
b = 6.1059 (6) ŵ = 3.23 mm1
c = 25.450 (2) ÅT = 293 K
β = 100.958 (4)°Block, green
V = 1598.7 (3) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω/2θ scansh = 1012
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.499, Tmax = 0.564l = 3028
8029 measured reflections200 standard reflections every 3 reflections
2815 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7463P]
where P = (Fo2 + 2Fc2)/3
2815 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]V = 1598.7 (3) Å3
Mr = 771.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.4792 (10) ŵ = 3.23 mm1
b = 6.1059 (6) ÅT = 293 K
c = 25.450 (2) Å0.25 × 0.20 × 0.20 mm
β = 100.958 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2189 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.499, Tmax = 0.564200 standard reflections every 3 reflections
8029 measured reflections intensity decay: 1%
2815 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.60 e Å3
2815 reflectionsΔρmin = 0.71 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10163 (4)0.98365 (8)0.229572 (18)0.0870 (2)
C10.4910 (3)0.8264 (4)0.17361 (10)0.0366 (6)
C20.3209 (3)0.7210 (6)0.21980 (12)0.0567 (9)
H20.28540.61950.24020.068*
C30.4355 (3)0.6766 (5)0.20345 (11)0.0479 (8)
H30.47670.54330.21260.058*
C40.3099 (3)1.0674 (6)0.17612 (13)0.0525 (8)
H40.26691.19910.16680.063*
C50.4259 (3)1.0225 (5)0.15993 (13)0.0462 (8)
H50.46081.12500.13960.055*
C60.2591 (3)0.9156 (6)0.20593 (12)0.0492 (8)
C70.6186 (3)0.7783 (5)0.15678 (10)0.0411 (7)
H7A0.68070.72520.18730.049*
H7B0.65290.91210.14430.049*
C100.6013 (3)0.6071 (5)0.11224 (10)0.0354 (6)
C120.1011 (3)0.4106 (5)0.06736 (10)0.0354 (6)
C130.1512 (3)0.2454 (5)0.03830 (11)0.0410 (7)
H130.10830.11170.03240.049*
C140.2815 (3)0.6273 (4)0.05081 (11)0.0373 (6)
H140.32540.76050.05480.045*
C150.2618 (3)0.2798 (5)0.01872 (11)0.0392 (7)
H150.29180.16580.00010.047*
C160.1726 (3)0.6080 (5)0.07202 (11)0.0393 (7)
H160.14470.72640.08990.047*
C170.0511 (4)0.5523 (6)0.12039 (17)0.0694 (11)
H17A0.02060.61430.14500.104*
H17B0.11260.49180.13990.104*
H17C0.09240.66440.09660.104*
C190.0777 (3)0.1795 (6)0.08259 (15)0.0640 (10)
H19A0.11670.16220.04550.096*
H19B0.14450.18410.10370.096*
H19C0.02070.05830.09390.096*
Cu10.50000.50000.00000.03234 (15)
N10.0042 (2)0.3814 (4)0.08968 (10)0.0462 (6)
N20.3302 (2)0.4658 (3)0.02439 (9)0.0331 (5)
O10.6222 (2)0.4143 (4)0.12444 (8)0.0570 (6)
O20.56545 (17)0.6809 (3)0.06509 (7)0.0372 (4)
O30.58520 (19)0.1416 (3)0.03998 (7)0.0469 (5)
H3B0.55910.00500.04630.056*
H3A0.60110.21050.07270.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0564 (3)0.1343 (5)0.0770 (3)0.0039 (2)0.0294 (2)0.0350 (3)
C10.0497 (17)0.0354 (15)0.0256 (13)0.0051 (13)0.0092 (12)0.0073 (11)
C20.069 (2)0.065 (2)0.0416 (17)0.0128 (19)0.0260 (16)0.0034 (15)
C30.065 (2)0.0413 (17)0.0386 (15)0.0014 (16)0.0123 (15)0.0054 (13)
C40.061 (2)0.0482 (18)0.0505 (18)0.0102 (17)0.0149 (16)0.0055 (15)
C50.060 (2)0.0394 (18)0.0421 (16)0.0025 (15)0.0167 (15)0.0010 (13)
C60.0488 (18)0.064 (2)0.0388 (16)0.0027 (17)0.0171 (14)0.0152 (15)
C70.0470 (17)0.0440 (17)0.0323 (14)0.0046 (14)0.0080 (12)0.0083 (12)
C100.0345 (15)0.0392 (17)0.0358 (15)0.0073 (13)0.0155 (12)0.0071 (12)
C120.0330 (14)0.0396 (15)0.0348 (14)0.0011 (13)0.0093 (12)0.0013 (12)
C130.0413 (16)0.0349 (15)0.0505 (16)0.0085 (13)0.0177 (13)0.0096 (13)
C140.0407 (15)0.0298 (15)0.0447 (16)0.0029 (12)0.0164 (13)0.0063 (12)
C150.0437 (16)0.0334 (15)0.0452 (16)0.0045 (13)0.0199 (13)0.0103 (12)
C160.0405 (16)0.0337 (16)0.0477 (16)0.0018 (13)0.0188 (13)0.0063 (13)
C170.062 (2)0.073 (2)0.087 (3)0.0086 (19)0.048 (2)0.017 (2)
C190.054 (2)0.067 (2)0.079 (2)0.0204 (18)0.0334 (18)0.0083 (19)
Cu10.0321 (3)0.0372 (3)0.0304 (3)0.0056 (2)0.01259 (19)0.00735 (18)
N10.0408 (14)0.0468 (15)0.0572 (15)0.0077 (12)0.0249 (12)0.0071 (12)
N20.0355 (12)0.0318 (13)0.0351 (12)0.0014 (10)0.0143 (10)0.0048 (9)
O10.0861 (18)0.0371 (12)0.0473 (12)0.0003 (12)0.0116 (11)0.0025 (10)
O20.0436 (11)0.0381 (11)0.0317 (10)0.0060 (9)0.0114 (8)0.0075 (8)
O30.0602 (13)0.0386 (11)0.0438 (11)0.0036 (10)0.0146 (9)0.0017 (9)
Geometric parameters (Å, º) top
Br1—C61.906 (3)C14—N21.347 (3)
C1—C31.386 (4)C14—C161.357 (4)
C1—C51.389 (4)C14—H140.9300
C1—C71.508 (4)C15—N21.336 (3)
C2—C61.367 (5)C15—H150.9300
C2—C31.371 (4)C16—H160.9300
C2—H20.9300C17—N11.445 (4)
C3—H30.9300C17—H17A0.9600
C4—C61.368 (5)C17—H17B0.9600
C4—C51.384 (5)C17—H17C0.9600
C4—H40.9300C19—N11.447 (4)
C5—H50.9300C19—H19A0.9600
C7—C101.527 (4)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700Cu1—O2i2.0006 (17)
C10—O11.226 (4)Cu1—O22.0006 (17)
C10—O21.270 (3)Cu1—N22.004 (2)
C12—N11.345 (3)Cu1—N2i2.004 (2)
C12—C131.410 (4)Cu1—O32.5052 (19)
C12—C161.412 (4)Cu1—O3i2.5052 (19)
C13—C151.362 (4)O3—H3B0.9018
C13—H130.9300O3—H3A0.9200
C3—C1—C5117.9 (3)C14—C16—C12120.9 (3)
C3—C1—C7121.0 (3)C14—C16—H16119.6
C5—C1—C7121.1 (3)C12—C16—H16119.6
C6—C2—C3119.5 (3)N1—C17—H17A109.5
C6—C2—H2120.2N1—C17—H17B109.5
C3—C2—H2120.2H17A—C17—H17B109.5
C2—C3—C1121.3 (3)N1—C17—H17C109.5
C2—C3—H3119.4H17A—C17—H17C109.5
C1—C3—H3119.4H17B—C17—H17C109.5
C6—C4—C5119.2 (3)N1—C19—H19A109.5
C6—C4—H4120.4N1—C19—H19B109.5
C5—C4—H4120.4H19A—C19—H19B109.5
C4—C5—C1120.9 (3)N1—C19—H19C109.5
C4—C5—H5119.5H19A—C19—H19C109.5
C1—C5—H5119.5H19B—C19—H19C109.5
C2—C6—C4121.1 (3)O2i—Cu1—O2180.00 (6)
C2—C6—Br1120.3 (3)O2i—Cu1—N290.81 (8)
C4—C6—Br1118.6 (3)O2—Cu1—N289.19 (8)
C1—C7—C10111.0 (2)O2i—Cu1—N2i89.19 (8)
C1—C7—H7A109.4O2—Cu1—N2i90.81 (8)
C10—C7—H7A109.4N2—Cu1—N2i180.00 (11)
C1—C7—H7B109.4O2—Cu1—O396.11 (7)
C10—C7—H7B109.4O2—Cu1—O3i83.89 (7)
H7A—C7—H7B108.0O3—Cu1—N292.98 (7)
O1—C10—O2125.9 (2)O3—Cu1—O2i83.89 (7)
O1—C10—C7118.6 (2)O3—Cu1—O3i180.00 (7)
O2—C10—C7115.5 (2)O3—Cu1—N2i87.02 (7)
N1—C12—C13122.9 (3)N2—Cu1—O3i87.02 (7)
N1—C12—C16122.8 (3)O2i—Cu1—O3i96.11 (7)
C13—C12—C16114.2 (2)O3i—Cu1—N2i92.98 (7)
C15—C13—C12120.6 (3)C12—N1—C17121.5 (3)
C15—C13—H13119.7C12—N1—C19121.4 (3)
C12—C13—H13119.7C17—N1—C19117.1 (3)
N2—C14—C16124.2 (3)C15—N2—C14115.4 (2)
N2—C14—H14117.9C15—N2—Cu1123.04 (18)
C16—C14—H14117.9C14—N2—Cu1121.40 (18)
N2—C15—C13124.6 (2)C10—O2—Cu1125.44 (18)
N2—C15—H15117.7H3B—O3—H3A105.6
C13—C15—H15117.7
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2ii0.902.032.901 (3)161
O3—H3A···O10.921.792.688 (3)163
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]
Mr771.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4792 (10), 6.1059 (6), 25.450 (2)
β (°) 100.958 (4)
V3)1598.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.499, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
8029, 2815, 2189
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.01
No. of reflections2815
No. of parameters198
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.71

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O22.0006 (17)Cu1—O32.5052 (19)
Cu1—N22.004 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.902.032.901 (3)161
O3—H3A···O10.921.792.688 (3)163
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1866–m1868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds