metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[2-(thio­semicarbazonometh­yl)benzene­sulfonato]calcium(II)

aDepartment of Chemistry, Qinghai Normal University, Xining 810008, People's Republic of China
*Correspondence e-mail: chenyt@qhnu.edu.cn

(Received 28 August 2009; accepted 5 September 2009; online 12 September 2009)

In the title compound, [Ca(C8H8N3O3S2)2(H2O)4], the Ca atom (site symmetry [\overline{1}]) adopts a slightly distorted octa­hedral CaO6 geometry and the mol­ecular conformation is stabilized by intra­molecular N—H⋯N inter­actions. In the crystal, the mol­ecules are linked by O—H⋯O, O—H⋯S, N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For background to Schiff bases, see: Sawant et al. (2009[Sawant, S. K., Gaikwad, G. A., Sawant, V. A., Yamgar, B. A. & Chavan, S. S. (2009). Inorg. Chem. Commun. 12, 632-633.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C8H8N3O3S2)2(H2O)4]

  • Mr = 628.73

  • Triclinic, [P \overline 1]

  • a = 6.9123 (11) Å

  • b = 9.6383 (13) Å

  • c = 10.9481 (17) Å

  • α = 64.372 (1)°

  • β = 87.708 (2)°

  • γ = 83.225 (2)°

  • V = 652.99 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 298 K

  • 0.31 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.831, Tmax = 0.929

  • 2223 measured reflections

  • 2223 independent reflections

  • 1781 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.227

  • S = 1.04

  • 2223 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Ca1—O4 2.310 (4)
Ca1—O5 2.313 (6)
Ca1—O1 2.362 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2 0.86 2.28 2.636 (7) 105
O5—H5C⋯O2i 0.85 2.07 2.840 (9) 150
N1—H1⋯S2ii 0.86 2.60 3.441 (6) 166
N3—H3B⋯O2iii 0.86 2.34 3.035 (7) 138
O4—H4C⋯S2iv 0.85 2.42 3.261 (6) 173
O4—H4D⋯O3v 0.85 1.87 2.712 (8) 171
O5—H5D⋯S2ii 0.85 2.42 3.197 (8) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+2; (iii) x, y-1, z+1; (iv) x, y+1, z-1; (v) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base metal complexes have been of interest in coordination chemistry for many years due to their facile synthesis, strong coordination function and wide applications (e.g. Sawant, et al., 2009). Ca complexes with Schiff base ligand have received little attention. In this paper, we report on the synthesis and crystal structure of the title compound, (I), (Scheme I).

The Ca(II) center is Six-coordinate with two O donors of 2-formyl-benzenesulfonate-thiosemicarbazide ligands and four O donors of coordinated water molecules, and adopts distorted octahedral coordination. The bond distances of Ca—O are in the range of 2.310 (4)–2.362 (4), which are consistent with the bond lengths reported previously. In the crystal packing, the molecules form a one-dimensional chain structure by the interaction of hydrogen bonds.

Related literature top

For background to Schiff bases, see: Sawant et al. (2009).

Experimental top

A solution of 1.0 mmol 2-formyl-benzenesulfonate-thiosemicarbazide was added to a solution of 0.5 mmol Ca(ClO4)2.4H2O in 5 ml e thanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
Tetraaquabis[2-(thiosemicarbazonomethyl)benzenesulfonato]calcium(II) top
Crystal data top
[Ca(C8H8N3O3S2)2(H2O)4]Z = 1
Mr = 628.73F(000) = 326
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9123 (11) ÅCell parameters from 1563 reflections
b = 9.6383 (13) Åθ = 3.6–27.6°
c = 10.9481 (17) ŵ = 0.62 mm1
α = 64.372 (1)°T = 298 K
β = 87.708 (2)°Block, colourless
γ = 83.225 (2)°0.31 × 0.15 × 0.12 mm
V = 652.99 (17) Å3
Data collection top
Bruker SMART CCD
diffractometer
2223 independent reflections
Radiation source: fine-focus sealed tube1781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Bruker, 2000)
h = 88
Tmin = 0.831, Tmax = 0.929k = 1011
2223 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1501P)2 + 0.6556P]
where P = (Fo2 + 2Fc2)/3
2223 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ca(C8H8N3O3S2)2(H2O)4]γ = 83.225 (2)°
Mr = 628.73V = 652.99 (17) Å3
Triclinic, P1Z = 1
a = 6.9123 (11) ÅMo Kα radiation
b = 9.6383 (13) ŵ = 0.62 mm1
c = 10.9481 (17) ÅT = 298 K
α = 64.372 (1)°0.31 × 0.15 × 0.12 mm
β = 87.708 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2223 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2000)
1781 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.929Rint = 0.000
2223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
2223 reflectionsΔρmin = 0.55 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.50000.50000.0345 (5)
S10.7458 (2)0.67806 (16)0.65974 (13)0.0354 (4)
S21.0140 (3)0.13332 (17)1.21326 (16)0.0449 (5)
O10.6451 (7)0.5503 (5)0.6662 (4)0.0438 (11)
O20.6760 (7)0.8251 (5)0.5486 (4)0.0501 (12)
O30.9554 (7)0.6437 (6)0.6624 (5)0.0507 (12)
O40.7857 (7)0.5634 (6)0.3822 (5)0.0556 (13)
H4C0.83640.64740.34010.083*
H4D0.85920.49140.37300.083*
O50.6194 (10)0.2408 (6)0.5851 (8)0.096 (3)
H5C0.55280.18780.56110.143*
H5D0.70930.18060.63940.143*
N10.9136 (7)0.1670 (6)1.0860 (5)0.0354 (11)
H10.95410.15871.01390.043*
N20.8339 (7)0.3076 (5)1.0789 (5)0.0337 (11)
N30.8802 (9)0.0645 (6)1.3157 (5)0.0506 (14)
H3A0.84200.15651.30710.061*
H3B0.88740.01231.39470.061*
C10.9278 (8)0.0419 (6)1.2074 (6)0.0353 (13)
C20.8137 (8)0.4179 (6)0.9586 (6)0.0352 (12)
H20.85290.40010.88380.042*
C30.7269 (8)0.5739 (6)0.9407 (5)0.0309 (12)
C40.6848 (8)0.6971 (6)0.8118 (5)0.0311 (12)
C50.6039 (9)0.8407 (7)0.7991 (6)0.0390 (13)
H50.57910.92110.71330.047*
C60.5592 (9)0.8668 (7)0.9128 (7)0.0429 (14)
H60.50310.96350.90340.052*
C70.5998 (9)0.7453 (8)1.0420 (7)0.0441 (15)
H70.57210.76151.11900.053*
C80.6807 (9)0.6020 (7)1.0545 (6)0.0369 (13)
H80.70540.52191.14060.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0392 (9)0.0391 (9)0.0220 (8)0.0068 (7)0.0025 (6)0.0094 (7)
S10.0473 (9)0.0352 (8)0.0200 (7)0.0087 (6)0.0001 (6)0.0074 (6)
S20.0613 (11)0.0331 (8)0.0317 (8)0.0016 (7)0.0043 (7)0.0066 (7)
O10.069 (3)0.044 (2)0.0195 (19)0.016 (2)0.0045 (18)0.0119 (18)
O20.080 (3)0.040 (2)0.023 (2)0.011 (2)0.005 (2)0.0059 (19)
O30.053 (3)0.066 (3)0.042 (3)0.011 (2)0.008 (2)0.031 (2)
O40.056 (3)0.058 (3)0.053 (3)0.017 (2)0.019 (2)0.023 (2)
O50.103 (5)0.043 (3)0.123 (6)0.013 (3)0.073 (4)0.018 (3)
N10.042 (3)0.034 (2)0.022 (2)0.001 (2)0.0021 (19)0.005 (2)
N20.038 (3)0.030 (2)0.029 (3)0.0019 (19)0.0006 (19)0.009 (2)
N30.082 (4)0.034 (3)0.024 (3)0.000 (3)0.000 (2)0.004 (2)
C10.040 (3)0.035 (3)0.025 (3)0.007 (2)0.003 (2)0.006 (2)
C20.039 (3)0.034 (3)0.027 (3)0.004 (2)0.004 (2)0.008 (2)
C30.032 (3)0.031 (3)0.026 (3)0.008 (2)0.005 (2)0.007 (2)
C40.032 (3)0.033 (3)0.025 (3)0.010 (2)0.002 (2)0.008 (2)
C50.045 (3)0.031 (3)0.032 (3)0.005 (2)0.003 (2)0.005 (2)
C60.047 (3)0.040 (3)0.045 (4)0.000 (3)0.000 (3)0.021 (3)
C70.055 (4)0.047 (3)0.037 (3)0.013 (3)0.007 (3)0.023 (3)
C80.045 (3)0.037 (3)0.028 (3)0.008 (2)0.001 (2)0.012 (2)
Geometric parameters (Å, º) top
Ca1—O4i2.310 (4)N1—H10.8600
Ca1—O42.310 (4)N2—C21.286 (7)
Ca1—O52.313 (6)N3—C11.318 (8)
Ca1—O5i2.313 (6)N3—H3A0.8599
Ca1—O12.362 (4)N3—H3B0.8599
Ca1—O1i2.362 (4)C2—C31.484 (8)
S1—O31.446 (5)C2—H20.9300
S1—O21.455 (4)C3—C81.403 (8)
S1—O11.459 (4)C3—C41.410 (8)
S1—C41.781 (6)C4—C51.380 (9)
S2—C11.698 (6)C5—C61.389 (9)
O4—H4C0.8497C5—H50.9300
O4—H4D0.8503C6—C71.405 (10)
O5—H5C0.8504C6—H60.9300
O5—H5D0.8499C7—C81.378 (9)
N1—C11.351 (7)C7—H70.9300
N1—N21.372 (7)C8—H80.9300
O4i—Ca1—O4180.0H5C—O5—H5D108.9
O4i—Ca1—O590.5 (2)C1—N1—N2119.3 (5)
O4—Ca1—O589.5 (2)C1—N1—H1120.4
O4i—Ca1—O5i89.5 (2)N2—N1—H1120.3
O4—Ca1—O5i90.5 (2)C2—N2—N1115.2 (5)
O5—Ca1—O5i180.0C1—N3—H3A119.7
O4i—Ca1—O194.41 (17)C1—N3—H3B120.2
O4—Ca1—O185.59 (17)H3A—N3—H3B120.0
O5—Ca1—O196.42 (19)N3—C1—N1117.5 (5)
O5i—Ca1—O183.58 (19)N3—C1—S2123.7 (4)
O4i—Ca1—O1i85.59 (17)N1—C1—S2118.8 (5)
O4—Ca1—O1i94.41 (17)N2—C2—C3119.1 (6)
O5—Ca1—O1i83.58 (19)N2—C2—H2120.5
O5i—Ca1—O1i96.42 (19)C3—C2—H2120.5
O1—Ca1—O1i180.0C8—C3—C4117.7 (5)
O4i—Ca1—H5C83.1C8—C3—C2119.9 (5)
O4—Ca1—H5C96.9C4—C3—C2122.3 (5)
O5—Ca1—H5C16.4C5—C4—C3120.7 (5)
O5i—Ca1—H5C163.6C5—C4—S1117.3 (4)
O1—Ca1—H5C111.4C3—C4—S1121.9 (4)
O1i—Ca1—H5C68.6C4—C5—C6120.9 (6)
O3—S1—O2113.0 (3)C4—C5—H5119.5
O3—S1—O1112.4 (3)C6—C5—H5119.5
O2—S1—O1112.7 (3)C5—C6—C7119.1 (6)
O3—S1—C4106.2 (3)C5—C6—H6120.4
O2—S1—C4106.4 (3)C7—C6—H6120.4
O1—S1—C4105.5 (2)C8—C7—C6119.9 (6)
S1—O1—Ca1133.1 (2)C8—C7—H7120.1
Ca1—O4—H4C134.2C6—C7—H7120.1
Ca1—O4—H4D117.6C7—C8—C3121.6 (6)
H4C—O4—H4D108.2C7—C8—H8119.2
Ca1—O5—H5C113.7C3—C8—H8119.2
Ca1—O5—H5D137.2
O3—S1—O1—Ca198.8 (4)C8—C3—C4—S1177.3 (4)
O2—S1—O1—Ca130.3 (5)C2—C3—C4—S13.8 (7)
C4—S1—O1—Ca1145.9 (3)O3—S1—C4—C5115.4 (5)
O4i—Ca1—O1—S1131.7 (4)O2—S1—C4—C55.2 (5)
O4—Ca1—O1—S148.3 (4)O1—S1—C4—C5125.1 (5)
O5—Ca1—O1—S1137.3 (4)O3—S1—C4—C361.0 (5)
O5i—Ca1—O1—S142.7 (4)O2—S1—C4—C3178.4 (4)
O1i—Ca1—O1—S161 (12)O1—S1—C4—C358.5 (5)
C1—N1—N2—C2175.4 (5)C3—C4—C5—C61.1 (9)
N2—N1—C1—N36.2 (8)S1—C4—C5—C6177.5 (4)
N2—N1—C1—S2176.3 (4)C4—C5—C6—C70.9 (9)
N1—N2—C2—C3179.4 (5)C5—C6—C7—C80.8 (9)
N2—C2—C3—C84.4 (8)C6—C7—C8—C30.9 (9)
N2—C2—C3—C4174.4 (5)C4—C3—C8—C71.0 (8)
C8—C3—C4—C51.1 (8)C2—C3—C8—C7179.9 (5)
C2—C3—C4—C5180.0 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.282.636 (7)105
O5—H5C···O2i0.852.072.840 (9)150
N1—H1···S2ii0.862.603.441 (6)166
N3—H3B···O2iii0.862.343.035 (7)138
O4—H4C···S2iv0.852.423.261 (6)173
O4—H4D···O3v0.851.872.712 (8)171
O5—H5D···S2ii0.852.423.197 (8)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+2; (iii) x, y1, z+1; (iv) x, y+1, z1; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ca(C8H8N3O3S2)2(H2O)4]
Mr628.73
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.9123 (11), 9.6383 (13), 10.9481 (17)
α, β, γ (°)64.372 (1), 87.708 (2), 83.225 (2)
V3)652.99 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.31 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2000)
Tmin, Tmax0.831, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
2223, 2223, 1781
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.227, 1.04
No. of reflections2223
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.55

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ca1—O42.310 (4)Ca1—O12.362 (4)
Ca1—O52.313 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.282.636 (7)105
O5—H5C···O2i0.852.072.840 (9)150
N1—H1···S2ii0.862.603.441 (6)166
N3—H3B···O2iii0.862.343.035 (7)138
O4—H4C···S2iv0.852.423.261 (6)173
O4—H4D···O3v0.851.872.712 (8)171
O5—H5D···S2ii0.852.423.197 (8)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+2; (iii) x, y1, z+1; (iv) x, y+1, z1; (v) x+2, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Program for New Century Excellent Talents in University for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSawant, S. K., Gaikwad, G. A., Sawant, V. A., Yamgar, B. A. & Chavan, S. S. (2009). Inorg. Chem. Commun. 12, 632–633.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds