organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–2,3,4,5,6-penta­fluoro­benzoic acid (1/2)

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn

(Received 29 August 2009; accepted 30 August 2009; online 12 September 2009)

In the title 1:2 adduct, C10H8N2·2C7HF5O2, the complete 4,4′-bipyridine mol­ecule is generated by a crystallographic twofold axis. The components of the adduct are linked by inter­molecular O—H⋯N hydrogen bonds and further connected by a combination of C—H⋯O, C—H⋯F and F⋯F [2.859 (2) Å] inter­actions.

Related literature

For further discussion of inter­molecular inter­actions involving fluorine atoms, see, for example: Chopra & Row (2008[Chopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54-67.]); Choudhury & Row (2004[Choudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des. 4, 47-52 .]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C7HF5O2

  • Mr = 580.34

  • Monoclinic, C 2/c

  • a = 17.910 (3) Å

  • b = 10.7016 (19) Å

  • c = 13.498 (3) Å

  • β = 119.631 (3)°

  • V = 2248.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.974

  • 6884 measured reflections

  • 2695 independent reflections

  • 2060 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.05

  • 2695 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.78 2.602 (2) 176
C9—H9⋯O1 0.93 2.40 3.102 (2) 132
C10—H10⋯O1i 0.93 2.35 3.196 (2) 152
C12—H12⋯F5ii 0.93 2.48 3.126 (2) 127
C13—H13⋯F5ii 0.93 2.63 3.214 (2) 121
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Weak interactions involving fluorine is of great interest and importance in producing new suppramolecular assemblies. Fluorine can provide C—H···F, N—H···F hydrogen bonds (e.g. Chopra & Row, 2008) as well as C—F···F and C—F···π interactions (e.g. Choudhury & Row, 2004). in crystal engineering. Fluorine derivatives have generated a wide variety of crystal structures. The title molecular complex is composed of 4,4'-bipyridine and 2,3,4,5,6-pentafluorobenzoic acid with the molar ratio of 1:2 to form a basic unit. The components are linked by O—H···N hdrogen bond (O2···N1 2.602 (2) Å, O2—H2···N1 176 °) (Fig. 1). C9—H9···O1 weak hydrogen bond further strengthen the connection (Table 1). Intermolecular C10—H10···O1(symmery code: -x + 1, -y + 1, -z + 1), C12—H12···F5, C13—H13···F5 (symmery code: x, -y + 2, z + 1/2) hydrogen bonds and F1···F3 [2.859 (2) Å, symmery code: x, -y, -1/2 + z] interaction link these units further.

Related literature top

For further discussion of intermolecular interactions involving fluorine atoms, see, for example: Chopra & Row (2008); Choudhury & Row (2004).

Experimental top

A solution of 4,4'-bipyridine (2 mmol) in ethanol (5 ml) was added into 2,3,4,5,6-pentafluorobenzoic acid (4 mmol) in ethanol(20 ml). The mixture was refluxed with stirring for 10 min. The resultant solution was filtered. Colourless blocks of (I) were formed after a few days of slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 Å, O—H = 0.82Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title adduct. Displacement ellipsoids are drawn at the 30% probability level. Atoms with the suffic A are generated by the symmetry operation (1–x, y, 3/2–z).
4,4'-Bipyridine–2,3,4,5,6-pentafluorobenzoic acid (1/2) top
Crystal data top
C10H8N2·2C7HF5O2F(000) = 1160
Mr = 580.34Dx = 1.714 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 187 reflections
a = 17.910 (3) Åθ = 2.2–22.0°
b = 10.7016 (19) ŵ = 0.17 mm1
c = 13.498 (3) ÅT = 296 K
β = 119.631 (3)°BLOCK, colorless
V = 2248.8 (7) Å30.30 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2695 independent reflections
Radiation source: fine-focus sealed tube2060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2322
Tmin = 0.946, Tmax = 0.974k = 1411
6884 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.397P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2695 reflectionsΔρmax = 0.25 e Å3
183 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (7)
Crystal data top
C10H8N2·2C7HF5O2V = 2248.8 (7) Å3
Mr = 580.34Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.910 (3) ŵ = 0.17 mm1
b = 10.7016 (19) ÅT = 296 K
c = 13.498 (3) Å0.30 × 0.28 × 0.20 mm
β = 119.631 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2060 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.974Rint = 0.022
6884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2695 reflectionsΔρmin = 0.18 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.49615 (12)0.70420 (16)0.63825 (14)0.0565 (4)
H100.52080.63300.68180.068*
C120.44977 (12)0.91468 (15)0.61897 (14)0.0541 (4)
H120.44290.98900.64930.065*
C130.42370 (13)0.90600 (16)0.50439 (14)0.0578 (5)
H130.39840.97550.45840.069*
C90.46907 (12)0.70404 (16)0.52338 (15)0.0574 (4)
H90.47620.63160.49100.069*
C110.48637 (10)0.81117 (13)0.68843 (12)0.0430 (3)
N10.43312 (9)0.80276 (13)0.45658 (11)0.0516 (4)
F10.31878 (9)0.41200 (10)0.13362 (9)0.0756 (4)
F50.38044 (8)0.81354 (10)0.04501 (10)0.0727 (4)
F20.24519 (9)0.35110 (11)0.08528 (10)0.0807 (4)
O20.38410 (9)0.76706 (11)0.24230 (10)0.0624 (4)
H20.40190.77810.31050.094*
F40.30691 (9)0.74859 (12)0.17270 (10)0.0802 (4)
F30.23514 (9)0.51811 (12)0.24105 (8)0.0766 (4)
C20.35217 (10)0.61682 (14)0.09940 (12)0.0442 (3)
C30.31759 (11)0.49867 (15)0.06163 (13)0.0490 (4)
O10.42833 (13)0.57290 (14)0.29718 (11)0.0921 (6)
C70.34739 (11)0.69832 (14)0.01702 (14)0.0475 (4)
C40.27894 (12)0.46524 (15)0.05187 (14)0.0529 (4)
C50.27456 (11)0.54934 (17)0.13111 (13)0.0524 (4)
C10.39257 (11)0.65043 (16)0.22420 (13)0.0512 (4)
C60.30987 (12)0.66596 (16)0.09672 (14)0.0527 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0778 (12)0.0382 (8)0.0439 (9)0.0111 (8)0.0227 (8)0.0021 (6)
C120.0787 (11)0.0355 (8)0.0413 (8)0.0068 (8)0.0244 (8)0.0005 (6)
C130.0836 (12)0.0384 (8)0.0409 (8)0.0075 (8)0.0229 (8)0.0029 (7)
C90.0754 (11)0.0435 (9)0.0466 (9)0.0083 (8)0.0250 (8)0.0065 (7)
C110.0513 (8)0.0341 (7)0.0379 (8)0.0014 (6)0.0177 (6)0.0004 (6)
N10.0633 (8)0.0464 (8)0.0388 (7)0.0000 (6)0.0205 (6)0.0036 (5)
F10.1289 (11)0.0458 (6)0.0587 (6)0.0090 (6)0.0515 (7)0.0036 (5)
F50.1063 (9)0.0427 (6)0.0662 (7)0.0179 (6)0.0403 (7)0.0041 (5)
F20.1197 (10)0.0498 (6)0.0704 (7)0.0246 (7)0.0454 (7)0.0210 (5)
O20.0914 (9)0.0431 (6)0.0387 (6)0.0117 (6)0.0214 (6)0.0040 (5)
F40.1189 (10)0.0679 (8)0.0561 (6)0.0000 (7)0.0450 (7)0.0184 (6)
F30.1011 (9)0.0798 (8)0.0386 (5)0.0019 (7)0.0268 (6)0.0116 (5)
C20.0529 (8)0.0380 (7)0.0384 (7)0.0070 (6)0.0200 (7)0.0006 (6)
C30.0690 (10)0.0380 (8)0.0429 (8)0.0035 (7)0.0298 (8)0.0024 (6)
O10.1500 (15)0.0554 (8)0.0406 (7)0.0404 (9)0.0239 (8)0.0032 (6)
C70.0571 (9)0.0352 (7)0.0473 (8)0.0003 (7)0.0236 (7)0.0007 (6)
C40.0691 (11)0.0394 (8)0.0505 (9)0.0048 (7)0.0298 (8)0.0087 (7)
C50.0616 (10)0.0552 (10)0.0365 (8)0.0046 (8)0.0213 (7)0.0049 (7)
C10.0627 (10)0.0439 (9)0.0390 (8)0.0103 (7)0.0190 (7)0.0018 (6)
C60.0677 (10)0.0478 (9)0.0440 (8)0.0054 (8)0.0287 (8)0.0088 (7)
Geometric parameters (Å, º) top
C10—C91.377 (2)F2—C41.3383 (19)
C10—C111.385 (2)O2—C11.295 (2)
C10—H100.9300O2—H20.8200
C12—C131.380 (2)F4—C61.3352 (19)
C12—C111.389 (2)F3—C51.3328 (18)
C12—H120.9300C2—C71.382 (2)
C13—N11.332 (2)C2—C31.389 (2)
C13—H130.9300C2—C11.512 (2)
C9—N11.330 (2)C3—C41.380 (2)
C9—H90.9300O1—C11.202 (2)
C11—C11i1.483 (3)C7—C61.381 (2)
F1—C31.3358 (18)C4—C51.370 (2)
F5—C71.3388 (18)C5—C61.372 (3)
C9—C10—C11119.51 (15)C3—C2—C1120.42 (14)
C9—C10—H10120.2F1—C3—C4116.50 (15)
C11—C10—H10120.2F1—C3—C2121.41 (14)
C13—C12—C11119.23 (15)C4—C3—C2122.08 (15)
C13—C12—H12120.4F5—C7—C6116.66 (14)
C11—C12—H12120.4F5—C7—C2120.75 (14)
N1—C13—C12123.04 (15)C6—C7—C2122.59 (15)
N1—C13—H13118.5F2—C4—C5119.63 (15)
C12—C13—H13118.5F2—C4—C3120.38 (15)
N1—C9—C10123.05 (16)C5—C4—C3119.99 (16)
N1—C9—H9118.5F3—C5—C4119.92 (16)
C10—C9—H9118.5F3—C5—C6120.44 (16)
C10—C11—C12117.44 (14)C4—C5—C6119.63 (15)
C10—C11—C11i119.81 (10)O1—C1—O2125.12 (15)
C12—C11—C11i122.74 (10)O1—C1—C2121.09 (15)
C9—N1—C13117.73 (14)O2—C1—C2113.78 (14)
C1—O2—H2109.5F4—C6—C5120.39 (15)
C7—C2—C3116.11 (14)F4—C6—C7120.03 (16)
C7—C2—C1123.47 (15)C5—C6—C7119.57 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.782.602 (2)176
C9—H9···O10.932.403.102 (2)132
C10—H10···O1ii0.932.353.196 (2)152
C12—H12···F5iii0.932.483.126 (2)127
C13—H13···F5iii0.932.633.214 (2)121
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C7HF5O2
Mr580.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.910 (3), 10.7016 (19), 13.498 (3)
β (°) 119.631 (3)
V3)2248.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.946, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6884, 2695, 2060
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.05
No. of reflections2695
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.782.602 (2)176
C9—H9···O10.932.403.102 (2)132
C10—H10···O1i0.932.353.196 (2)152
C12—H12···F5ii0.932.483.126 (2)127
C13—H13···F5ii0.932.633.214 (2)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1/2.
 

Acknowledgements

This work was supported by the Project of the Provincial Key Laboratory of Liaoning Province, China (No. 2008S104), the Project for Innovation Teams of Liaoning Province, China (No. 2007 T052) and the Doctoral Start-up Project of Liaoning University.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des. 4, 47–52 .  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds