organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-cyano­ethyl)-4,4′-di­methyl-N,N′-(butane-1,4-di­yl)di­benzene­sulfonamide

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: hgxywyx@163.com

(Received 6 September 2009; accepted 6 September 2009; online 12 September 2009)

The complete mol­ecule of the title compound, C24H30N4O4S2, is generated by a crystallographic inversion centre. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming infinite sheets.

Related literature

For background to polyamines, see: Thomas & Thomas (2003[Thomas, T. & Thomas, T. J. (2003). J. Cell. Mol. Med. 7, 113-126.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30N4O4S2

  • Mr = 502.64

  • Monoclinic, P 21 /c

  • a = 16.688 (13) Å

  • b = 5.786 (5) Å

  • c = 13.675 (11) Å

  • β = 104.005 (13)°

  • V = 1281.3 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.950

  • 6684 measured reflections

  • 2510 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.05

  • 2510 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.93 2.54 3.271 (4) 136
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Polyamines are natural products and have interesting biological activities. It present in the majority of cells. They play important roles in the synthesis of proteins, cell division, and bind to nucleic acids resulting in their condensation, thereby affecting gene expression. These effects might have implications in cancer treatment (e.g. Thomas & Thomas, 2003). We now report the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound consists of two 4-methylbenzenesulfonyl groups anchoring to polyamine chain. In the structure of (I), the two phenyl ring of two 4-methylbenzenesulfonyl groups are antiparallel by symmetry.

In the crystal, the molecules are linked into infinite sheets by intermolecular C–H···O hydrogen bonds (Fig. 2).

Related literature top

For background to polyamines, see: Thomas & Thomas (2003).

Experimental top

To a solution of 1,4-diaminobutane (8.8 g, 0.1 mol) in MeOH (300 ml), acrylonitrile (11.66 g, 0.22 mol) was added dropwise at room temperature during 1 h. After stirring for additional 7 h, the solvent was evaporated. The residue was fractionated in vacuum, yielding 17.27 g (89%) of N,N'-bis(2-cyanoethyl)-1,4-diaminobutane.

To a mixture of N,N'-bis(2-cyanoethyl)-1,4-diaminobutane (17.27 g, 89 mmol) and Et3N (17.98 g, 178 mmol) in THF (120 ml), a solution of 4-methylbenzenesulfonyl chloride (TsCl, 34.02 g, 178 mmol) in THF (120 ml) was added dropwise at room temperature. The precipitate was filtered off and discarded. The filtrate was subsequently washed with 4 mol/L NaOH (in order to hydrolyze any unreacted TsCl) and NaCl solution. Evaporation gave the target compound (I) as colourless rods (43.34 g, 97%).

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix a are generated by (–x, 1–y, 1–z).
[Figure 2] Fig. 2. One-dimensional structure of (I) along c axis, Hydrogen bonds are shown as dashed lines.
N,N'-Bis(2-cyanoethyl)-4,4'-dimethyl-N,N'- (butane-1,4-diyl)dibenzenesulfonamide top
Crystal data top
C24H30N4O4S2F(000) = 532
Mr = 502.64Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2757 reflections
a = 16.688 (13) Åθ = 3.0–27.6°
b = 5.786 (5) ŵ = 0.25 mm1
c = 13.675 (11) ÅT = 296 K
β = 104.005 (13)°Rod, colorless
V = 1281.3 (17) Å30.34 × 0.26 × 0.21 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2510 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1620
Tmin = 0.921, Tmax = 0.950k = 77
6684 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2525P]
where P = (Fo2 + 2Fc2)/3
2510 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H30N4O4S2V = 1281.3 (17) Å3
Mr = 502.64Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.688 (13) ŵ = 0.25 mm1
b = 5.786 (5) ÅT = 296 K
c = 13.675 (11) Å0.34 × 0.26 × 0.21 mm
β = 104.005 (13)°
Data collection top
Bruker SMART CCD
diffractometer
2510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2114 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.950Rint = 0.019
6684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2510 reflectionsΔρmin = 0.29 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24666 (2)0.32320 (7)0.53380 (3)0.03878 (15)
O10.20256 (7)0.1573 (2)0.57929 (10)0.0506 (3)
O20.30224 (8)0.2415 (2)0.47571 (10)0.0558 (3)
N10.17969 (8)0.4914 (2)0.46127 (10)0.0392 (3)
N20.09678 (12)0.0954 (3)0.26259 (14)0.0718 (5)
C10.30449 (9)0.4988 (3)0.63262 (12)0.0371 (4)
C20.33821 (10)0.7065 (3)0.61032 (13)0.0469 (4)
H2A0.32750.75920.54420.056*
C30.38797 (11)0.8344 (3)0.68757 (15)0.0532 (5)
H3A0.41080.97270.67250.064*
C40.40431 (10)0.7595 (4)0.78710 (14)0.0496 (4)
C50.36879 (11)0.5538 (4)0.80728 (13)0.0541 (5)
H5A0.37870.50200.87350.065*
C60.31883 (11)0.4232 (3)0.73143 (13)0.0498 (4)
H6A0.29520.28650.74680.060*
C70.45863 (13)0.8996 (4)0.87086 (16)0.0720 (6)
H7A0.48391.02330.84230.108*
H7B0.50080.80200.91030.108*
H7C0.42570.96250.91310.108*
C80.03371 (9)0.4433 (3)0.47933 (13)0.0450 (4)
H8A0.01440.42540.40690.054*
H8B0.04550.29080.50870.054*
C90.11282 (9)0.5880 (3)0.50313 (12)0.0429 (4)
H9A0.09990.74250.47650.052*
H9B0.13260.60080.57570.052*
C100.19632 (11)0.5953 (3)0.37044 (13)0.0469 (4)
H10A0.24930.54070.36220.056*
H10B0.19970.76180.37850.056*
C110.12903 (12)0.5356 (3)0.27550 (12)0.0497 (4)
H11A0.07880.61830.27720.060*
H11B0.14660.58680.21640.060*
C120.11145 (12)0.2864 (4)0.26701 (13)0.0499 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0360 (2)0.0370 (3)0.0428 (2)0.00198 (15)0.00858 (17)0.00311 (16)
O10.0517 (7)0.0410 (7)0.0564 (7)0.0076 (5)0.0077 (6)0.0045 (5)
O20.0506 (7)0.0601 (8)0.0597 (7)0.0117 (6)0.0191 (6)0.0116 (7)
N10.0341 (7)0.0462 (8)0.0371 (7)0.0025 (6)0.0086 (5)0.0004 (6)
N20.0825 (13)0.0529 (11)0.0736 (12)0.0051 (10)0.0062 (10)0.0087 (9)
C10.0296 (7)0.0394 (9)0.0420 (8)0.0018 (6)0.0080 (6)0.0010 (7)
C20.0475 (9)0.0444 (10)0.0470 (9)0.0020 (8)0.0075 (8)0.0057 (8)
C30.0520 (10)0.0429 (10)0.0627 (12)0.0099 (8)0.0100 (9)0.0004 (8)
C40.0377 (9)0.0570 (11)0.0531 (10)0.0020 (8)0.0092 (8)0.0103 (9)
C50.0539 (10)0.0667 (13)0.0400 (9)0.0098 (9)0.0078 (8)0.0006 (9)
C60.0490 (10)0.0542 (11)0.0464 (9)0.0109 (8)0.0118 (8)0.0035 (8)
C70.0594 (12)0.0813 (16)0.0688 (14)0.0156 (11)0.0033 (10)0.0215 (12)
C80.0369 (8)0.0532 (11)0.0440 (9)0.0028 (8)0.0078 (7)0.0079 (8)
C90.0371 (8)0.0465 (10)0.0441 (9)0.0045 (7)0.0077 (7)0.0060 (8)
C100.0493 (10)0.0462 (10)0.0465 (9)0.0050 (8)0.0140 (8)0.0028 (8)
C110.0633 (11)0.0454 (10)0.0388 (9)0.0042 (8)0.0092 (8)0.0056 (7)
C120.0549 (11)0.0527 (12)0.0395 (9)0.0032 (9)0.0062 (8)0.0036 (8)
Geometric parameters (Å, º) top
S1—O11.4392 (14)C6—H6A0.9300
S1—O21.4393 (14)C7—H7A0.9600
S1—N11.6259 (15)C7—H7B0.9600
S1—C11.7772 (18)C7—H7C0.9600
N1—C101.466 (2)C8—C8i1.524 (3)
N1—C91.481 (2)C8—C91.530 (2)
N2—C121.130 (3)C8—H8A0.9700
C1—C61.385 (2)C8—H8B0.9700
C1—C21.392 (2)C9—H9A0.9700
C2—C31.389 (3)C9—H9B0.9700
C2—H2A0.9300C10—C111.536 (2)
C3—C41.391 (3)C10—H10A0.9700
C3—H3A0.9300C10—H10B0.9700
C4—C51.387 (3)C11—C121.471 (3)
C4—C71.513 (3)C11—H11A0.9700
C5—C61.387 (3)C11—H11B0.9700
C5—H5A0.9300
O1—S1—O2118.99 (9)H7A—C7—H7B109.5
O1—S1—N1108.36 (9)C4—C7—H7C109.5
O2—S1—N1107.44 (9)H7A—C7—H7C109.5
O1—S1—C1107.02 (9)H7B—C7—H7C109.5
O2—S1—C1107.68 (9)C8i—C8—C9111.23 (18)
N1—S1—C1106.75 (9)C8i—C8—H8A109.4
C10—N1—C9119.19 (14)C9—C8—H8A109.4
C10—N1—S1121.28 (12)C8i—C8—H8B109.4
C9—N1—S1117.45 (11)C9—C8—H8B109.4
C6—C1—C2120.19 (16)H8A—C8—H8B108.0
C6—C1—S1119.69 (14)N1—C9—C8113.80 (14)
C2—C1—S1120.06 (13)N1—C9—H9A108.8
C3—C2—C1119.52 (17)C8—C9—H9A108.8
C3—C2—H2A120.2N1—C9—H9B108.8
C1—C2—H2A120.2C8—C9—H9B108.8
C2—C3—C4121.16 (18)H9A—C9—H9B107.7
C2—C3—H3A119.4N1—C10—C11111.99 (15)
C4—C3—H3A119.4N1—C10—H10A109.2
C5—C4—C3118.05 (17)C11—C10—H10A109.2
C5—C4—C7121.07 (18)N1—C10—H10B109.2
C3—C4—C7120.88 (19)C11—C10—H10B109.2
C4—C5—C6121.83 (17)H10A—C10—H10B107.9
C4—C5—H5A119.1C12—C11—C10112.22 (15)
C6—C5—H5A119.1C12—C11—H11A109.2
C1—C6—C5119.23 (18)C10—C11—H11A109.2
C1—C6—H6A120.4C12—C11—H11B109.2
C5—C6—H6A120.4C10—C11—H11B109.2
C4—C7—H7A109.5H11A—C11—H11B107.9
C4—C7—H7B109.5N2—C12—C11178.0 (2)
O1—S1—N1—C10149.35 (13)C1—C2—C3—C40.4 (3)
O2—S1—N1—C1019.60 (15)C2—C3—C4—C50.6 (3)
C1—S1—N1—C1095.68 (14)C2—C3—C4—C7179.95 (17)
O1—S1—N1—C947.17 (14)C3—C4—C5—C60.5 (3)
O2—S1—N1—C9176.93 (11)C7—C4—C5—C6179.98 (18)
C1—S1—N1—C967.79 (13)C2—C1—C6—C51.6 (3)
O1—S1—C1—C617.62 (16)S1—C1—C6—C5175.56 (13)
O2—S1—C1—C6111.40 (15)C4—C5—C6—C10.6 (3)
N1—S1—C1—C6133.48 (14)C10—N1—C9—C8102.87 (18)
O1—S1—C1—C2165.17 (13)S1—N1—C9—C893.29 (15)
O2—S1—C1—C265.80 (15)C8i—C8—C9—N1177.68 (17)
N1—S1—C1—C249.32 (15)C9—N1—C10—C1173.0 (2)
C6—C1—C2—C31.6 (3)S1—N1—C10—C11123.77 (15)
S1—C1—C2—C3175.62 (13)N1—C10—C11—C1250.0 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2ii0.932.543.271 (4)136
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H30N4O4S2
Mr502.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.688 (13), 5.786 (5), 13.675 (11)
β (°) 104.005 (13)
V3)1281.3 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.34 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.921, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
6684, 2510, 2114
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.05
No. of reflections2510
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.543.271 (4)136
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, T. & Thomas, T. J. (2003). J. Cell. Mol. Med. 7, 113–126.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds