organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[(5-Bromo-2-hy­droxy­benzyl­­idene)amino]eth­yl}benzene­sulfonamide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cSchool of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 September 2009; accepted 7 September 2009; online 12 September 2009)

In the title compound, C15H15BrN2O3S, the dihedral angle between the benzene rings is 6.1 (2)° and an intra­molecular O—H⋯N hydrogen bond helps to establish the conformation. In the crystal structure, the mol­ecules are linked by way of N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Chohan et al. (2008[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.], 2009[Chohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o2426.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15BrN2O3S

  • Mr = 383.26

  • Orthorhombic, P n a 21

  • a = 50.544 (6) Å

  • b = 6.3146 (10) Å

  • c = 4.8625 (5) Å

  • V = 1551.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 296 K

  • 0.28 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.633, Tmax = 0.714

  • 8263 measured reflections

  • 2844 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.100

  • S = 1.12

  • 2844 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.79 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1212 Friedel pairs

  • Flack parameter: 0.050 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.82 1.88 2.602 (6) 147
N2—H2A⋯O3i 0.80 (5) 2.30 (5) 3.076 (6) 163 (5)
C15—H15⋯O2ii 0.93 2.49 3.259 (7) 140
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) x, y+1, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of sulfonamide derivatives (Chohan et al. 2009), we now report the preparation and crystal structure of title compound (I), (Fig. 1).

The crystal structure of (II) 4-{2-[(5-chloro-2 hydroxybenzylidene)amino]ethyl} -benzenesulfonamide (Chohan et al., 2008) has been reported which differs from (I) due to chloro substitution instead of bromo.

In (I), the benzene rings A (C1–C6) of 5-bromosalicylaldehyde and B (C10–C15) of sulfanilamide moiety are oriented at a dihedral angle of 6.1 (3)° whereas its value as observed in (II) is 23.95 (18)°. The Br1 and S1 atoms are at a distance of -0.024 (7) and -0.167 (6) Å from the mean square planes of rings A and B, respectively. There exist two intramolecular H-bondings (Table 1, Fig. 1) forming S(5) and S(6) ring motifs (Bernstein et al., 1995). Two intermolecular H-bondings (Table 1, Fig. 2) link the molecules in infinite one dimensional polymeric network extending along the c axis.

Related literature top

For related structures, see: Chohan et al. (2008, 2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An ethanol solution (20 ml) of 4-(2-aminoethyl) benzene sulfonamide (0.4005 g, 2 mmol) was added to an ethanol solution (10 ml) of 5-bromosalicylaldehyde (0.402 g, 2 mmol). The reaction mixture was refluxed for 3 h. The colour of the solution gradually changed from colourless to greenish yellow. The solution was cooled to room temperature, filtered and the volume was reduced to about one-third on the rotary evaporator. The resulting mixture was allowed to stand for 10 days, after which bright yellow needles of (I) were obtained.

Refinement top

The coordinates of H atoms of NH2 group were refined. The other H atoms were positioned geometrically with O—H = 0.82, C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains.
4-{2-[(5-Bromo-2-hydroxybenzylidene)amino]ethyl}benzenesulfonamide top
Crystal data top
C15H15BrN2O3SF(000) = 776
Mr = 383.26Dx = 1.640 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2932 reflections
a = 50.544 (6) Åθ = 2.4–28.3°
b = 6.3146 (10) ŵ = 2.80 mm1
c = 4.8625 (5) ÅT = 296 K
V = 1551.9 (3) Å3Needle, yellow
Z = 40.28 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2844 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.80 pixels mm-1θmax = 25.5°, θmin = 2.4°
ω scansh = 5260
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 76
Tmin = 0.633, Tmax = 0.714l = 55
8263 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + 2.7358P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2844 reflectionsΔρmax = 0.41 e Å3
213 parametersΔρmin = 0.79 e Å3
1 restraintAbsolute structure: Flack (1983), 1212 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.050 (15)
Crystal data top
C15H15BrN2O3SV = 1551.9 (3) Å3
Mr = 383.26Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 50.544 (6) ŵ = 2.80 mm1
b = 6.3146 (10) ÅT = 296 K
c = 4.8625 (5) Å0.28 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2844 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2523 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.714Rint = 0.035
8263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.41 e Å3
S = 1.12Δρmin = 0.79 e Å3
2844 reflectionsAbsolute structure: Flack (1983), 1212 Friedel pairs
213 parametersAbsolute structure parameter: 0.050 (15)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24179 (1)0.37198 (12)1.16449 (17)0.0633 (2)
S10.03204 (2)0.2434 (2)0.5033 (3)0.0276 (3)
O10.15029 (7)0.8114 (6)0.6129 (10)0.0543 (16)
O20.04542 (7)0.4313 (6)0.5921 (8)0.0460 (12)
O30.02060 (7)0.1032 (6)0.7008 (7)0.0398 (11)
N10.14244 (8)0.4653 (8)0.3341 (10)0.0420 (16)
N20.00760 (8)0.3200 (7)0.3108 (12)0.0367 (14)
C10.17777 (8)0.5013 (8)0.6554 (13)0.0330 (14)
C20.17084 (9)0.7071 (9)0.7344 (10)0.0360 (17)
C30.18524 (10)0.8111 (9)0.9375 (12)0.0437 (19)
C40.20599 (10)0.7116 (9)1.0649 (10)0.0403 (19)
C50.21316 (9)0.5108 (9)0.9871 (12)0.0373 (16)
C60.19906 (10)0.4058 (9)0.7859 (11)0.0397 (17)
C70.16276 (10)0.3869 (9)0.4471 (11)0.0390 (17)
C80.12783 (10)0.3344 (9)0.1349 (13)0.0463 (19)
C90.10328 (11)0.2403 (10)0.2692 (11)0.0450 (19)
C100.08639 (10)0.1205 (9)0.0700 (9)0.0330 (16)
C110.09253 (10)0.0829 (9)0.0103 (12)0.0420 (19)
C120.07651 (10)0.1935 (8)0.1920 (12)0.0380 (17)
C130.05431 (8)0.0959 (7)0.2953 (9)0.0263 (16)
C140.04792 (10)0.1065 (8)0.2252 (10)0.0323 (17)
C150.06412 (10)0.2172 (9)0.0426 (12)0.0403 (17)
H1O0.142590.731000.507320.0815*
H2A0.0025 (11)0.224 (8)0.292 (14)0.0439*
H2B0.0123 (10)0.405 (9)0.181 (13)0.0439*
H30.180770.948750.986950.0522*
H40.215220.780301.204230.0481*
H60.203920.268840.737030.042 (16)*
H70.168280.252070.395640.06 (2)*
H8A0.139160.221250.068780.0554*
H8B0.122680.420410.021470.0554*
H9A0.108680.145940.416240.0540*
H9B0.092910.353590.350060.0540*
H110.107700.147230.058520.06 (2)*
H120.080710.331350.243120.030 (14)*
H140.032910.170340.298200.040 (14)*
H150.060030.356230.004080.030 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0515 (3)0.0879 (5)0.0505 (3)0.0203 (3)0.0093 (4)0.0043 (4)
S10.0311 (6)0.0282 (6)0.0234 (5)0.0029 (5)0.0027 (5)0.0059 (5)
O10.045 (2)0.047 (3)0.071 (3)0.0065 (19)0.013 (2)0.008 (2)
O20.047 (2)0.036 (2)0.055 (2)0.0026 (18)0.0051 (19)0.0254 (19)
O30.047 (2)0.042 (2)0.0305 (18)0.0067 (19)0.0041 (16)0.0036 (17)
N10.030 (2)0.052 (3)0.044 (3)0.010 (2)0.001 (2)0.009 (2)
N20.040 (2)0.036 (3)0.034 (2)0.0072 (19)0.005 (3)0.002 (2)
C10.028 (2)0.034 (3)0.037 (2)0.007 (2)0.010 (3)0.009 (3)
C20.028 (3)0.037 (3)0.043 (3)0.004 (2)0.008 (2)0.005 (2)
C30.042 (3)0.036 (3)0.053 (4)0.002 (2)0.002 (3)0.008 (3)
C40.040 (3)0.046 (4)0.035 (3)0.011 (3)0.004 (2)0.009 (2)
C50.025 (2)0.052 (3)0.035 (3)0.003 (2)0.008 (2)0.003 (3)
C60.038 (3)0.037 (3)0.044 (3)0.003 (3)0.008 (2)0.008 (3)
C70.036 (3)0.040 (3)0.041 (3)0.006 (2)0.007 (2)0.008 (3)
C80.042 (3)0.057 (4)0.040 (3)0.013 (3)0.011 (3)0.011 (3)
C90.046 (3)0.051 (4)0.038 (3)0.013 (3)0.005 (2)0.007 (3)
C100.031 (2)0.041 (3)0.027 (3)0.015 (2)0.0053 (19)0.004 (2)
C110.034 (3)0.047 (4)0.045 (3)0.003 (2)0.010 (3)0.004 (3)
C120.042 (3)0.025 (3)0.047 (3)0.004 (2)0.007 (3)0.009 (3)
C130.031 (2)0.028 (3)0.020 (3)0.0034 (19)0.004 (2)0.003 (2)
C140.030 (3)0.028 (3)0.039 (3)0.002 (2)0.002 (2)0.002 (2)
C150.045 (3)0.034 (3)0.042 (3)0.004 (2)0.005 (3)0.011 (3)
Geometric parameters (Å, º) top
Br1—C51.899 (5)C9—C101.496 (8)
S1—O21.432 (4)C10—C151.393 (7)
S1—O31.428 (4)C10—C111.378 (8)
S1—N21.624 (5)C11—C121.387 (8)
S1—C131.777 (4)C12—C131.375 (7)
O1—C21.364 (6)C13—C141.362 (7)
O1—H1O0.8200C14—C151.396 (7)
N1—C71.266 (7)C3—H30.9300
N1—C81.472 (8)C4—H40.9300
N2—H2A0.80 (5)C6—H60.9300
N2—H2B0.86 (6)C7—H70.9300
C1—C71.457 (8)C8—H8A0.9700
C1—C21.400 (8)C8—H8B0.9700
C1—C61.387 (7)C9—H9A0.9700
C2—C31.392 (7)C9—H9B0.9700
C3—C41.371 (7)C11—H110.9300
C4—C51.372 (8)C12—H120.9300
C5—C61.380 (8)C14—H140.9300
C8—C91.523 (8)C15—H150.9300
Br1···C6i3.720 (5)C7···C5vi3.479 (7)
Br1···C4ii3.433 (5)C8···C1vi3.594 (8)
Br1···C5ii3.584 (5)C13···O3i3.356 (6)
Br1···H4iii3.1700C14···O3i3.188 (6)
O1···N12.602 (6)C15···O2x3.259 (7)
O2···C15iv3.259 (7)C15···O3i3.420 (7)
O3···N2v3.076 (6)C7···H1O2.4200
O3···C14vi3.188 (6)C11···H8A3.0600
O3···C15vi3.420 (7)H1O···N11.8800
O3···C13vi3.356 (6)H1O···C72.4200
O2···H122.5400H2A···O3vii2.30 (5)
O2···H15iv2.4900H2B···N2xi2.70 (6)
O2···H9Biv2.7700H4···Br1xii3.1700
O3···H142.6800H6···H72.4500
O3···H2Av2.30 (5)H7···H62.4500
O3···H14v2.7800H7···H8A2.1700
N1···O12.602 (6)H8A···C113.0600
N2···O3vii3.076 (6)H8A···H72.1700
N1···H1O1.8800H9A···H112.5400
N2···H2Bviii2.70 (6)H9B···O2x2.7700
C1···C4vi3.470 (8)H9B···H152.3600
C1···C8i3.594 (8)H11···H9A2.5400
C4···C1i3.470 (8)H12···O22.5400
C4···C7i3.526 (8)H12···H15xiii2.5400
C4···Br1ix3.433 (5)H14···O32.6800
C5···C7i3.479 (7)H14···O3vii2.7800
C5···Br1ix3.584 (5)H15···O2x2.4900
C6···Br1vi3.720 (5)H15···H9B2.3600
C7···C4vi3.526 (8)H15···H12xiv2.5400
O2—S1—O3120.1 (2)S1—C13—C12119.3 (4)
O2—S1—N2106.6 (2)C12—C13—C14121.5 (4)
O2—S1—C13107.9 (2)S1—C13—C14119.0 (3)
O3—S1—N2105.3 (2)C13—C14—C15119.4 (5)
O3—S1—C13108.3 (2)C10—C15—C14120.3 (5)
N2—S1—C13108.1 (2)C2—C3—H3120.00
C2—O1—H1O109.00C4—C3—H3120.00
C7—N1—C8118.2 (5)C3—C4—H4120.00
S1—N2—H2A109 (4)C5—C4—H4120.00
S1—N2—H2B114 (3)C1—C6—H6119.00
H2A—N2—H2B124 (6)C5—C6—H6119.00
C2—C1—C7121.4 (4)N1—C7—H7119.00
C6—C1—C7120.4 (5)C1—C7—H7119.00
C2—C1—C6118.2 (5)N1—C8—H8A110.00
O1—C2—C1121.3 (5)N1—C8—H8B110.00
O1—C2—C3118.5 (5)C9—C8—H8A110.00
C1—C2—C3120.1 (5)C9—C8—H8B110.00
C2—C3—C4120.3 (5)H8A—C8—H8B108.00
C3—C4—C5120.1 (5)C8—C9—H9A109.00
Br1—C5—C4120.2 (4)C8—C9—H9B109.00
Br1—C5—C6119.6 (4)C10—C9—H9A109.00
C4—C5—C6120.2 (5)C10—C9—H9B109.00
C1—C6—C5121.1 (5)H9A—C9—H9B108.00
N1—C7—C1122.0 (5)C10—C11—H11119.00
N1—C8—C9110.2 (5)C12—C11—H11119.00
C8—C9—C10112.6 (4)C11—C12—H12121.00
C9—C10—C15119.6 (5)C13—C12—H12121.00
C11—C10—C15118.6 (5)C13—C14—H14120.00
C9—C10—C11121.8 (5)C15—C14—H14120.00
C10—C11—C12121.2 (5)C10—C15—H15120.00
C11—C12—C13118.9 (5)C14—C15—H15120.00
O2—S1—C13—C1216.3 (5)C2—C3—C4—C51.9 (8)
O2—S1—C13—C14168.7 (4)C3—C4—C5—Br1179.7 (4)
O3—S1—C13—C12147.7 (4)C3—C4—C5—C61.9 (8)
O3—S1—C13—C1437.2 (4)Br1—C5—C6—C1178.9 (4)
N2—S1—C13—C1298.7 (4)C4—C5—C6—C11.1 (8)
N2—S1—C13—C1476.4 (4)N1—C8—C9—C10175.1 (5)
C8—N1—C7—C1177.3 (5)C8—C9—C10—C1179.5 (7)
C7—N1—C8—C9101.1 (6)C8—C9—C10—C1599.3 (6)
C6—C1—C2—O1179.3 (5)C9—C10—C11—C12179.0 (5)
C6—C1—C2—C30.4 (8)C15—C10—C11—C122.2 (8)
C7—C1—C2—O12.2 (8)C9—C10—C15—C14179.0 (5)
C7—C1—C2—C3178.8 (5)C11—C10—C15—C142.3 (8)
C2—C1—C6—C50.4 (8)C10—C11—C12—C130.8 (8)
C7—C1—C6—C5178.8 (5)C11—C12—C13—S1174.3 (4)
C2—C1—C7—N12.0 (8)C11—C12—C13—C140.6 (8)
C6—C1—C7—N1176.4 (5)S1—C13—C14—C15174.4 (4)
O1—C2—C3—C4179.9 (5)C12—C13—C14—C150.5 (7)
C1—C2—C3—C41.2 (8)C13—C14—C15—C101.0 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z1/2; (iv) x, y1, z1; (v) x, y, z1/2; (vi) x, y, z1; (vii) x, y, z+1/2; (viii) x, y1, z1/2; (ix) x+1/2, y+1/2, z1/2; (x) x, y+1, z+1; (xi) x, y1, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x, y1, z; (xiv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.882.602 (6)147
N2—H2A···O3vii0.80 (5)2.30 (5)3.076 (6)163 (5)
C15—H15···O2x0.932.493.259 (7)140
Symmetry codes: (vii) x, y, z+1/2; (x) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H15BrN2O3S
Mr383.26
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)50.544 (6), 6.3146 (10), 4.8625 (5)
V3)1551.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.28 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.633, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
8263, 2844, 2523
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.12
No. of reflections2844
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.79
Absolute structureFlack (1983), 1212 Friedel pairs
Absolute structure parameter0.050 (15)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.882.602 (6)147
N2—H2A···O3i0.80 (5)2.30 (5)3.076 (6)163 (5)
C15—H15···O2ii0.932.493.259 (7)140
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

HAS greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042-160410-PS2-117).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o2426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds