organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Bromo­benzyl­­idene)-3,4-di­hydroxy­benzohydrazide monohydrate

aLiaoning University of Traditional Chinese Medicine, Shenyang, 110032, People's Republic of China, and bDalian Medical University, Liaoning 116044, People's Republic of China
*Correspondence e-mail: dalianzhongmintao@163.com, syzhaody@163.com

(Received 6 September 2009; accepted 12 September 2009; online 19 September 2009)

In the title compound, C14H11BrN2O3·H2O, the dihedral angle between the two benzene rings of the Schiff base is 22.7 (2)° and an intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into layers parallel to the ab plane by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds from the reaction of aldehydes with primary amines, see: Herrick et al. (2008[Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619-624.]); Suresh et al. (2007[Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332-1333.]). For a related structure, see: Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O3·H2O

  • Mr = 353.17

  • Monoclinic, P 21 /c

  • a = 7.8119 (5) Å

  • b = 13.8504 (9) Å

  • c = 13.0764 (9) Å

  • β = 91.708 (1)°

  • V = 1414.21 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 295 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.621, Tmax = 0.668

  • 7384 measured reflections

  • 2511 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.02

  • 2511 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 2.30 2.734 (3) 114
O4—H16⋯O2i 0.85 2.03 2.760 (3) 143
O4—H15⋯O3ii 0.85 1.94 2.761 (3) 163
O2—H2⋯O3iii 0.82 1.91 2.675 (3) 154
O1—H1⋯O4iv 0.82 2.16 2.929 (4) 155
N1—H1A⋯O4v 0.86 2.07 2.898 (4) 162
Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z-1; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007). In this paper, the crystal structure of a new Schiff base compound derived from the condensation reaction of 3,4-dihydroxybenzohydrazide with 4-bromobenzaldehyde is reported.

The Schiff base molecule of the title compound, (I), displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 3,4-Dihydroxy-N'-(2-hydroxybenzylidene)benzohydrazide- methanol-water (2/1/3) (Ma et al., 2008). The dihedral angle between the two benzene rings in (I) is 22.7 (2)°. An intramolecular O—H···O hydrogen bond is observed. In the crystal structure the water molecule links three symmetry related molecules through O—H···O and O—H···N hydrogen bonds (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the ab plane are formed (Fig. 2).

Related literature top

For the synthesis of Schiff base compounds from the reaction of aldehydes with primary amines, see: Herrick et al. (2008); Suresh et al. (2007). For a related structures, see: Ma et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

4-Bromosalicylaldehyde (0.1 mmol, 15.6 mg) and 3,4-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blokcs of (I) were formed by gradual evaporation of the solvent over a period of nine days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å) and refned as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.
(E)-N'-(4-Bromobenzylidene)-3,4-dihydroxybenzohydrazide monohydrate top
Crystal data top
C14H11BrN2O3·H2OF(000) = 712
Mr = 353.17Dx = 1.659 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2538 reflections
a = 7.8119 (5) Åθ = 2.7–24.2°
b = 13.8504 (9) ŵ = 2.92 mm1
c = 13.0764 (9) ÅT = 295 K
β = 91.708 (1)°Block, light yellow
V = 1414.21 (16) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2511 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 99
Tmin = 0.621, Tmax = 0.668k = 1216
7384 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0453P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C14H11BrN2O3·H2OV = 1414.21 (16) Å3
Mr = 353.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8119 (5) ŵ = 2.92 mm1
b = 13.8504 (9) ÅT = 295 K
c = 13.0764 (9) Å0.18 × 0.16 × 0.15 mm
β = 91.708 (1)°
Data collection top
Siemens SMART CCD
diffractometer
2511 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
1810 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.668Rint = 0.096
7384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
2511 reflectionsΔρmin = 0.69 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08523 (6)0.16874 (3)0.20512 (4)0.0710 (2)
O10.2102 (4)1.04968 (18)0.1288 (2)0.0561 (7)
H10.24961.05830.18550.084*
O20.4375 (4)0.94026 (17)0.23369 (19)0.0590 (8)
H20.48820.89620.26170.089*
O30.4997 (3)0.72271 (16)0.16417 (17)0.0439 (6)
O40.4061 (3)0.12989 (17)0.70360 (19)0.0500 (7)
H150.43610.16600.75360.075*
H160.46220.07870.71720.075*
N10.5896 (3)0.66104 (17)0.0155 (2)0.0349 (6)
H1A0.59320.66520.05000.042*
N20.6628 (3)0.58384 (19)0.0659 (2)0.0364 (7)
C10.4411 (4)0.8144 (2)0.0139 (2)0.0310 (7)
C20.4779 (4)0.8365 (2)0.0866 (3)0.0343 (8)
H2A0.55450.79820.12150.041*
C30.4030 (5)0.9141 (2)0.1350 (3)0.0379 (8)
C40.2885 (4)0.9734 (2)0.0836 (3)0.0375 (8)
C50.2535 (4)0.9517 (2)0.0159 (3)0.0435 (9)
H50.17700.99010.05080.052*
C60.3290 (4)0.8743 (2)0.0652 (3)0.0378 (8)
H60.30500.86190.13310.045*
C70.5118 (4)0.7306 (2)0.0699 (3)0.0335 (7)
C80.7358 (4)0.5211 (2)0.0103 (3)0.0357 (8)
H80.73390.52850.06040.043*
C90.8220 (4)0.4381 (2)0.0570 (3)0.0344 (8)
C100.8858 (4)0.3655 (2)0.0043 (3)0.0419 (9)
H100.87420.37080.07500.050*
C110.9666 (4)0.2852 (2)0.0382 (3)0.0456 (9)
H111.00850.23670.00340.055*
C120.9835 (4)0.2786 (2)0.1423 (3)0.0423 (9)
C130.9267 (5)0.3516 (3)0.2044 (3)0.0454 (9)
H130.94350.34740.27500.054*
C140.8455 (4)0.4301 (2)0.1623 (3)0.0412 (8)
H140.80560.47860.20450.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0630 (3)0.0516 (3)0.0988 (5)0.02020 (19)0.0116 (3)0.0259 (2)
O10.0711 (18)0.0459 (15)0.0516 (17)0.0227 (13)0.0093 (14)0.0098 (13)
O20.114 (2)0.0323 (13)0.0316 (14)0.0185 (14)0.0206 (14)0.0067 (11)
O30.0707 (16)0.0354 (13)0.0260 (14)0.0040 (11)0.0064 (12)0.0001 (10)
O40.0816 (18)0.0311 (12)0.0372 (14)0.0045 (12)0.0024 (13)0.0006 (11)
N10.0483 (16)0.0296 (14)0.0268 (15)0.0035 (12)0.0031 (12)0.0025 (12)
N20.0420 (16)0.0286 (14)0.0386 (17)0.0000 (12)0.0029 (13)0.0034 (13)
C10.0393 (17)0.0260 (15)0.0277 (18)0.0034 (13)0.0021 (14)0.0021 (14)
C20.0491 (19)0.0243 (16)0.0302 (19)0.0000 (14)0.0104 (15)0.0018 (14)
C30.058 (2)0.0268 (17)0.0290 (19)0.0029 (15)0.0086 (16)0.0006 (15)
C40.0461 (19)0.0287 (17)0.038 (2)0.0047 (15)0.0014 (16)0.0007 (15)
C50.050 (2)0.040 (2)0.042 (2)0.0093 (16)0.0136 (17)0.0038 (17)
C60.048 (2)0.0382 (18)0.0273 (18)0.0036 (16)0.0103 (15)0.0009 (15)
C70.0406 (18)0.0287 (17)0.031 (2)0.0053 (14)0.0025 (15)0.0014 (15)
C80.0424 (18)0.0322 (18)0.0326 (19)0.0023 (15)0.0033 (15)0.0000 (15)
C90.0321 (16)0.0298 (17)0.042 (2)0.0036 (13)0.0041 (15)0.0006 (15)
C100.046 (2)0.0390 (19)0.041 (2)0.0008 (16)0.0039 (17)0.0066 (17)
C110.0411 (19)0.0340 (19)0.062 (3)0.0026 (15)0.0049 (18)0.0069 (18)
C120.0335 (18)0.0343 (19)0.059 (3)0.0005 (14)0.0078 (17)0.0066 (18)
C130.047 (2)0.052 (2)0.037 (2)0.0060 (17)0.0031 (17)0.0067 (18)
C140.046 (2)0.0391 (19)0.039 (2)0.0044 (16)0.0041 (16)0.0044 (16)
Geometric parameters (Å, º) top
Br1—C121.893 (3)C3—C41.402 (5)
O1—C41.348 (4)C4—C51.372 (5)
O1—H10.8200C5—C61.374 (5)
O2—C31.374 (4)C5—H50.9300
O2—H20.8200C6—H60.9300
O3—C71.244 (4)C8—C91.458 (5)
O4—H150.8499C8—H80.9300
O4—H160.8500C9—C101.387 (5)
N1—C71.353 (4)C9—C141.387 (5)
N1—N21.372 (4)C10—C111.387 (5)
N1—H1A0.8600C10—H100.9300
N2—C81.277 (4)C11—C121.367 (5)
C1—C21.387 (5)C11—H110.9300
C1—C61.393 (4)C12—C131.378 (5)
C1—C71.471 (4)C13—C141.367 (5)
C2—C31.369 (5)C13—H130.9300
C2—H2A0.9300C14—H140.9300
C4—O1—H1109.5O3—C7—N1120.5 (3)
C3—O2—H2109.5O3—C7—C1121.6 (3)
H15—O4—H16101.6N1—C7—C1117.9 (3)
C7—N1—N2119.3 (3)N2—C8—C9120.4 (3)
C7—N1—H1A120.3N2—C8—H8119.8
N2—N1—H1A120.3C9—C8—H8119.8
C8—N2—N1116.3 (3)C10—C9—C14118.4 (3)
C2—C1—C6118.4 (3)C10—C9—C8119.9 (3)
C2—C1—C7124.1 (3)C14—C9—C8121.6 (3)
C6—C1—C7117.5 (3)C11—C10—C9121.1 (3)
C3—C2—C1120.9 (3)C11—C10—H10119.4
C3—C2—H2A119.5C9—C10—H10119.4
C1—C2—H2A119.5C12—C11—C10118.8 (3)
C2—C3—O2123.3 (3)C12—C11—H11120.6
C2—C3—C4120.6 (3)C10—C11—H11120.6
O2—C3—C4116.1 (3)C11—C12—C13121.0 (3)
O1—C4—C5119.2 (3)C11—C12—Br1120.8 (3)
O1—C4—C3122.5 (3)C13—C12—Br1118.2 (3)
C5—C4—C3118.3 (3)C14—C13—C12119.9 (3)
C4—C5—C6121.4 (3)C14—C13—H13120.0
C4—C5—H5119.3C12—C13—H13120.0
C6—C5—H5119.3C13—C14—C9120.7 (3)
C5—C6—C1120.4 (3)C13—C14—H14119.7
C5—C6—H6119.8C9—C14—H14119.7
C1—C6—H6119.8
C7—N1—N2—C8179.3 (3)C6—C1—C7—O313.4 (5)
C6—C1—C2—C31.4 (5)C2—C1—C7—N113.4 (5)
C7—C1—C2—C3177.9 (3)C6—C1—C7—N1165.9 (3)
C1—C2—C3—O2178.7 (3)N1—N2—C8—C9178.0 (3)
C1—C2—C3—C40.6 (5)N2—C8—C9—C10173.5 (3)
C2—C3—C4—O1179.1 (3)N2—C8—C9—C147.8 (5)
O2—C3—C4—O12.7 (5)C14—C9—C10—C112.0 (5)
C2—C3—C4—C50.2 (5)C8—C9—C10—C11179.3 (3)
O2—C3—C4—C5178.4 (3)C9—C10—C11—C120.3 (5)
O1—C4—C5—C6179.5 (3)C10—C11—C12—C132.1 (5)
C3—C4—C5—C60.5 (5)C10—C11—C12—Br1177.7 (2)
C4—C5—C6—C11.4 (5)C11—C12—C13—C142.8 (5)
C2—C1—C6—C51.8 (5)Br1—C12—C13—C14177.0 (3)
C7—C1—C6—C5177.5 (3)C12—C13—C14—C91.1 (5)
N2—N1—C7—O33.3 (5)C10—C9—C14—C131.3 (5)
N2—N1—C7—C1177.5 (2)C8—C9—C14—C13180.0 (3)
C2—C1—C7—O3167.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.302.734 (3)114
O4—H16···O2i0.852.032.760 (3)143
O4—H15···O3ii0.851.942.761 (3)163
O2—H2···O3iii0.821.912.675 (3)154
O1—H1···O4iv0.822.162.929 (4)155
N1—H1A···O4v0.862.072.898 (4)162
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1, z1; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O3·H2O
Mr353.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.8119 (5), 13.8504 (9), 13.0764 (9)
β (°) 91.708 (1)
V3)1414.21 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.621, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
7384, 2511, 1810
Rint0.096
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.02
No. of reflections2511
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.69

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.302.734 (3)114
O4—H16···O2i0.852.032.760 (3)143
O4—H15···O3ii0.851.942.761 (3)163
O2—H2···O3iii0.821.912.675 (3)154
O1—H1···O4iv0.822.162.929 (4)155
N1—H1A···O4v0.862.072.898 (4)162
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1, z1; (v) x+1, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationHerrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSuresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332–1333.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds