organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4-tri­fluoro­meth­yl-1,3-thia­zole-5-carboxylic acid

aThe Experiment Center of Chemical Engineering, College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, bDepartment of Applied Chemistry, College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and cDepartment of Chemical Engineering, Yancheng College of Textile Technology, Liberation Road S. No.265 Yancheng, Yancheng 224005, People's Republic of China
*Correspondence e-mail: xujiaying-1984@163.com

(Received 10 September 2009; accepted 15 September 2009; online 19 September 2009)

In crystal of the title compound, C6H4F3NO2S, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds, forming chains.

Related literature

For a related compound, see: Liu (2004[Liu, C.-L. (2004). J. Fluorine Chem. 125, 1287-1290.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4F3NO2S

  • Mr = 211.16

  • Monoclinic, P 21 /c

  • a = 4.961 (1) Å

  • b = 15.682 (3) Å

  • c = 10.632 (2) Å

  • β = 90.35 (3)°

  • V = 827.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.888, Tmax = 0.960

  • 1672 measured reflections

  • 1494 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.158

  • S = 1.15

  • 1494 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Ni 0.82 2.02 2.820 (3) 166
C1—H1A⋯O1ii 0.96 2.34 3.277 (4) 166
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For a related compound, see: Liu (2004). For reference structural data, see: Allen et al. (1987).

Experimental top

To a cooled solution of methyl 2-methyl-4-(trifluoromethyl)thiazole-5-carboxylate (0.12 mol) in ethyl alcohol (200 ml) was added a solution of sodium hydroxide (9.62 g) in 200ml of water. The solution was heated at 358 K for 1.5 h. After evaporation of the ethyl alcohol, the aqueous solution was diluted with 200 ml of water and acidified to pH = 1 with concentrated aqueous hydrochloric acid. The solid material was filtered and washed twice with 100 ml of water and 100 ml of dichloromethane. After drying in a vacuum oven,the title compound was obtained (yield; 85%). Colourless blocks of (I) were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82Å) and refined as with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···O hydrogen bonds are shown by dashed lines.
2-Methyl-4-trifluoromethyl-1,3-thiazole-5-carboxylic acid top
Crystal data top
C6H4F3NO2SF(000) = 424
Mr = 211.16Dx = 1.696 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.961 (1) Åθ = 10–14°
b = 15.682 (3) ŵ = 0.41 mm1
c = 10.632 (2) ÅT = 293 K
β = 90.35 (3)°Block, colourless
V = 827.1 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1209 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.888, Tmax = 0.960l = 1212
1672 measured reflections3 standard reflections every 200 reflections
1494 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1494 reflectionsΔρmax = 0.33 e Å3
119 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (8)
Crystal data top
C6H4F3NO2SV = 827.1 (3) Å3
Mr = 211.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.961 (1) ŵ = 0.41 mm1
b = 15.682 (3) ÅT = 293 K
c = 10.632 (2) Å0.30 × 0.20 × 0.10 mm
β = 90.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1209 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.888, Tmax = 0.9603 standard reflections every 200 reflections
1672 measured reflections intensity decay: 1%
1494 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.15Δρmax = 0.33 e Å3
1494 reflectionsΔρmin = 0.25 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1.03912 (15)0.13345 (4)0.21544 (7)0.0482 (4)
N0.7571 (4)0.22213 (14)0.3665 (2)0.0406 (6)
F11.1047 (4)0.41020 (12)0.3353 (2)0.0813 (7)
F20.7272 (5)0.38613 (12)0.4214 (2)0.0844 (8)
F30.7499 (4)0.41298 (12)0.2261 (2)0.0816 (7)
O11.2183 (5)0.35504 (14)0.0770 (2)0.0683 (7)
O21.4044 (4)0.22652 (13)0.0592 (2)0.0647 (7)
H2A1.49720.24970.00560.097*
C10.6926 (6)0.06626 (19)0.3979 (3)0.0569 (8)
H1A0.56990.08420.46210.085*
H1B0.83460.03300.43510.085*
H1C0.59780.03240.33680.085*
C20.8109 (6)0.14311 (16)0.3348 (3)0.0426 (7)
C31.0636 (5)0.24181 (18)0.2054 (2)0.0401 (7)
C40.8996 (5)0.27820 (16)0.2937 (2)0.0381 (6)
C51.2368 (5)0.28263 (18)0.1076 (2)0.0431 (7)
C60.8700 (6)0.37191 (17)0.3191 (3)0.0465 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0564 (5)0.0417 (5)0.0467 (5)0.0035 (3)0.0250 (4)0.0018 (3)
N0.0444 (13)0.0400 (12)0.0374 (12)0.0008 (9)0.0163 (10)0.0033 (9)
F10.0727 (14)0.0560 (12)0.1153 (19)0.0172 (10)0.0111 (12)0.0146 (11)
F20.1252 (18)0.0513 (11)0.0775 (15)0.0002 (10)0.0667 (13)0.0088 (9)
F30.1088 (19)0.0586 (12)0.0774 (15)0.0297 (11)0.0010 (13)0.0105 (10)
O10.0765 (17)0.0537 (14)0.0752 (17)0.0031 (11)0.0441 (13)0.0126 (11)
O20.0737 (15)0.0559 (13)0.0651 (15)0.0091 (10)0.0492 (12)0.0065 (10)
C10.068 (2)0.0435 (16)0.0600 (19)0.0010 (14)0.0290 (16)0.0046 (13)
C20.0462 (15)0.0416 (15)0.0403 (15)0.0016 (11)0.0174 (12)0.0002 (11)
C30.0378 (14)0.0461 (15)0.0366 (14)0.0000 (10)0.0136 (11)0.0002 (11)
C40.0364 (13)0.0431 (15)0.0348 (14)0.0009 (10)0.0110 (11)0.0019 (10)
C50.0420 (15)0.0515 (17)0.0360 (14)0.0011 (12)0.0153 (12)0.0004 (12)
C60.0533 (17)0.0416 (14)0.0447 (16)0.0004 (12)0.0212 (14)0.0030 (12)
Geometric parameters (Å, º) top
S—C31.707 (3)O2—H2A0.8200
S—C21.712 (3)C1—C21.501 (4)
N—C21.312 (3)C1—H1A0.9600
N—C41.371 (3)C1—H1B0.9600
F1—C61.320 (3)C1—H1C0.9600
F2—C61.321 (3)C3—C41.371 (3)
F3—C61.319 (3)C3—C51.496 (4)
O1—C51.185 (3)C4—C61.501 (4)
O2—C51.317 (3)
C3—S—C290.35 (12)C5—C3—S120.7 (2)
C2—N—C4110.8 (2)N—C4—C3115.5 (3)
C5—O2—H2A109.5N—C4—C6118.4 (2)
C2—C1—H1A109.5C3—C4—C6126.1 (2)
C2—C1—H1B109.5O1—C5—O2125.5 (2)
H1A—C1—H1B109.5O1—C5—C3123.9 (2)
C2—C1—H1C109.5O2—C5—C3110.6 (2)
H1A—C1—H1C109.5F3—C6—F1105.6 (2)
H1B—C1—H1C109.5F3—C6—F2107.0 (3)
N—C2—C1124.3 (2)F1—C6—F2107.0 (3)
N—C2—S114.24 (19)F3—C6—C4112.8 (2)
C1—C2—S121.5 (2)F1—C6—C4112.4 (2)
C4—C3—C5130.1 (3)F2—C6—C4111.5 (2)
C4—C3—S109.18 (19)
C4—N—C2—C1178.7 (3)S—C3—C4—C6177.7 (2)
C4—N—C2—S0.3 (3)C4—C3—C5—O114.8 (5)
C3—S—C2—N0.5 (2)S—C3—C5—O1162.6 (3)
C3—S—C2—C1179.0 (3)C4—C3—C5—O2166.9 (3)
C2—S—C3—C40.6 (2)S—C3—C5—O215.7 (3)
C2—S—C3—C5177.3 (2)N—C4—C6—F3113.2 (3)
C2—N—C4—C30.1 (3)C3—C4—C6—F368.6 (4)
C2—N—C4—C6178.2 (2)N—C4—C6—F1127.4 (3)
C5—C3—C4—N177.1 (3)C3—C4—C6—F150.7 (4)
S—C3—C4—N0.5 (3)N—C4—C6—F27.2 (4)
C5—C3—C4—C64.7 (4)C3—C4—C6—F2170.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Ni0.822.022.820 (3)166
C1—H1A···O1ii0.962.343.277 (4)166
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H4F3NO2S
Mr211.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.961 (1), 15.682 (3), 10.632 (2)
β (°) 90.35 (3)
V3)827.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.888, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
1672, 1494, 1209
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.158, 1.15
No. of reflections1494
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Ni0.822.022.820 (3)166
C1—H1A···O1ii0.962.343.277 (4)166
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Science Fundamental Research Fund of the Education Department, Jiangsu Province (No. 06KJB150024). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, C.-L. (2004). J. Fluorine Chem. 125, 1287–1290.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds