organic compounds
N′-[(E)-(4-Bromo-2-thienyl)methylene]isonicotinohydrazide
aDepartment of Chemistry, Bahauddin Zakariya University, Multan60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In title compound, C11H8BrN3OS, the dihedral angle between the two aromatic rings is 27.61 (14)° and the Br atom is disordered over two sites with an occupancy ratio of 0.804 (2):0.196 (2). In the crystal, the molecules are linked by N—H⋯O, C—H⋯O and C—H⋯N interactions, resulting in chains.
Related literature
For related structures, see: Jing et al. (2007); Shafiq et al. (2009); Wang et al. (2007). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S160053680903709X/hb5101sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903709X/hb5101Isup2.hkl
To a hot stirred solution of isoniazid (1.37 g, 0.01 mol) in ethanol (15 ml) was added 4-bromothiophene-2-carbaldehyde (1.91 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. Then it was allowed to cool to room temperature, filtered and washed with hot ethanol. The crude material was recrystallized in (1:3 v/v) 1,4-dioxan:ethanol, to afford light yellow needles of (I).
A large Fourier difference peak close to the Br-atom and higher values of its thermal parameters indicated the presence of disorder. The two parts of Br-atom were refined with equal ainisotropic displacement parameters (EADP). All other efforts like DFIX were utilized but the C10—Br1B bond could not be shortened.
The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 Å for aromatic like H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C11H8BrN3OS | F(000) = 2464 |
Mr = 310.17 | Dx = 1.634 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 2837 reflections |
a = 14.3507 (6) Å | θ = 3.0–27.9° |
b = 48.732 (2) Å | µ = 3.41 mm−1 |
c = 7.2115 (3) Å | T = 296 K |
V = 5043.3 (4) Å3 | Cut needle, light yellow |
Z = 16 | 0.26 × 0.14 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2837 independent reflections |
Radiation source: fine-focus sealed tube | 1954 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 7.50 pixels mm-1 | θmax = 27.9°, θmin = 3.0° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −64→63 |
Tmin = 0.567, Tmax = 0.666 | l = −9→9 |
12209 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0415P)2 + 9.3783P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2837 reflections | Δρmax = 0.56 e Å−3 |
158 parameters | Δρmin = −0.48 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1205 Friedal Pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.002 (13) |
C11H8BrN3OS | V = 5043.3 (4) Å3 |
Mr = 310.17 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 14.3507 (6) Å | µ = 3.41 mm−1 |
b = 48.732 (2) Å | T = 296 K |
c = 7.2115 (3) Å | 0.26 × 0.14 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2837 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1954 reflections with I > 2σ(I) |
Tmin = 0.567, Tmax = 0.666 | Rint = 0.035 |
12209 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.113 | Δρmax = 0.56 e Å−3 |
S = 1.04 | Δρmin = −0.48 e Å−3 |
2837 reflections | Absolute structure: Flack (1983), 1205 Friedal Pairs |
158 parameters | Absolute structure parameter: −0.002 (13) |
2 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1A | 0.42406 (6) | 0.25903 (2) | −0.16312 (17) | 0.0946 (5) | 0.804 (2) |
Br1B | 0.4270 (3) | 0.26462 (9) | −0.0262 (10) | 0.0946 (5) | 0.196 (2) |
S1 | 0.44553 (8) | 0.17467 (2) | 0.0252 (2) | 0.0549 (4) | |
O1 | 0.27773 (19) | 0.09307 (6) | 0.2899 (5) | 0.0505 (10) | |
N1 | −0.0545 (3) | 0.06098 (14) | 0.3270 (10) | 0.099 (3) | |
N2 | 0.1935 (2) | 0.12740 (7) | 0.1634 (5) | 0.0406 (11) | |
N3 | 0.2717 (2) | 0.14261 (7) | 0.1259 (5) | 0.0424 (11) | |
C1 | 0.1129 (3) | 0.08803 (8) | 0.2787 (6) | 0.0418 (14) | |
C2 | 0.0333 (3) | 0.10184 (10) | 0.3343 (7) | 0.0527 (16) | |
C3 | −0.0467 (3) | 0.08712 (15) | 0.3572 (10) | 0.080 (3) | |
C4 | 0.0234 (5) | 0.04764 (13) | 0.2750 (10) | 0.092 (3) | |
C5 | 0.1084 (4) | 0.06041 (10) | 0.2517 (8) | 0.0620 (19) | |
C6 | 0.2039 (3) | 0.10290 (8) | 0.2448 (6) | 0.0382 (14) | |
C7 | 0.2561 (3) | 0.16678 (9) | 0.0670 (7) | 0.0460 (16) | |
C8 | 0.3315 (3) | 0.18499 (9) | 0.0213 (7) | 0.0470 (14) | |
C9 | 0.3246 (3) | 0.21142 (11) | −0.0287 (9) | 0.068 (2) | |
C10 | 0.4113 (3) | 0.22347 (9) | −0.0687 (9) | 0.0643 (19) | |
C11 | 0.4832 (3) | 0.20625 (11) | −0.0432 (9) | 0.0653 (18) | |
H2 | 0.13903 | 0.13346 | 0.13520 | 0.0485* | |
H2A | 0.03442 | 0.12066 | 0.35548 | 0.0632* | |
H3 | −0.09935 | 0.09650 | 0.39733 | 0.0962* | |
H4 | 0.01970 | 0.02885 | 0.25376 | 0.1106* | |
H5 | 0.16110 | 0.05044 | 0.21847 | 0.0746* | |
H7 | 0.19500 | 0.17278 | 0.05327 | 0.0554* | |
H9 | 0.26831 | 0.22080 | −0.03612 | 0.0813* | |
H11 | 0.54538 | 0.21094 | −0.06045 | 0.0783* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1A | 0.0709 (4) | 0.0603 (5) | 0.1526 (14) | −0.0081 (3) | 0.0142 (7) | 0.0410 (7) |
Br1B | 0.0709 (4) | 0.0603 (5) | 0.1526 (14) | −0.0081 (3) | 0.0142 (7) | 0.0410 (7) |
S1 | 0.0358 (5) | 0.0516 (7) | 0.0773 (9) | 0.0035 (5) | −0.0020 (6) | 0.0081 (6) |
O1 | 0.0291 (14) | 0.0495 (17) | 0.073 (2) | 0.0004 (12) | −0.0118 (16) | 0.0034 (17) |
N1 | 0.056 (3) | 0.111 (5) | 0.130 (5) | −0.041 (3) | −0.031 (3) | 0.053 (4) |
N2 | 0.0250 (16) | 0.0437 (19) | 0.053 (2) | −0.0055 (14) | −0.0080 (15) | 0.0056 (16) |
N3 | 0.0281 (16) | 0.049 (2) | 0.050 (2) | −0.0061 (15) | −0.0043 (15) | 0.0029 (16) |
C1 | 0.0315 (19) | 0.048 (2) | 0.046 (3) | −0.0076 (17) | −0.0167 (19) | 0.007 (2) |
C2 | 0.037 (2) | 0.062 (3) | 0.059 (3) | 0.0025 (19) | −0.002 (2) | 0.022 (2) |
C3 | 0.039 (3) | 0.108 (5) | 0.094 (5) | −0.011 (3) | −0.012 (3) | 0.042 (4) |
C4 | 0.091 (5) | 0.068 (4) | 0.118 (6) | −0.032 (3) | −0.041 (4) | 0.030 (4) |
C5 | 0.062 (3) | 0.046 (3) | 0.078 (4) | −0.007 (2) | −0.026 (3) | 0.012 (3) |
C6 | 0.0276 (19) | 0.043 (2) | 0.044 (3) | −0.0029 (16) | −0.0040 (17) | −0.0027 (19) |
C7 | 0.029 (2) | 0.056 (3) | 0.053 (3) | −0.0051 (18) | −0.0089 (19) | 0.011 (2) |
C8 | 0.034 (2) | 0.049 (2) | 0.058 (3) | 0.0006 (17) | −0.008 (2) | 0.006 (2) |
C9 | 0.039 (2) | 0.057 (3) | 0.107 (5) | 0.002 (2) | −0.008 (3) | 0.026 (3) |
C10 | 0.045 (3) | 0.046 (3) | 0.102 (4) | −0.007 (2) | −0.001 (3) | 0.017 (3) |
C11 | 0.035 (2) | 0.063 (3) | 0.098 (4) | −0.003 (2) | 0.000 (3) | 0.015 (3) |
Br1A—C10 | 1.871 (5) | C2—C3 | 1.364 (7) |
Br1B—C10 | 2.041 (6) | C4—C5 | 1.380 (9) |
S1—C8 | 1.712 (4) | C7—C8 | 1.438 (6) |
S1—C11 | 1.704 (5) | C8—C9 | 1.341 (7) |
O1—C6 | 1.207 (5) | C9—C10 | 1.406 (6) |
N1—C3 | 1.297 (10) | C10—C11 | 1.343 (6) |
N1—C4 | 1.347 (9) | C2—H2A | 0.9300 |
N2—N3 | 1.372 (4) | C3—H3 | 0.9300 |
N2—C6 | 1.339 (5) | C4—H4 | 0.9300 |
N3—C7 | 1.272 (6) | C5—H5 | 0.9300 |
N2—H2 | 0.8600 | C7—H7 | 0.9300 |
C1—C2 | 1.385 (6) | C9—H9 | 0.9300 |
C1—C5 | 1.362 (6) | C11—H11 | 0.9300 |
C1—C6 | 1.513 (6) | ||
C8—S1—C11 | 91.9 (2) | Br1A—C10—C11 | 123.6 (4) |
C3—N1—C4 | 116.7 (5) | Br1B—C10—C9 | 118.5 (4) |
N3—N2—C6 | 118.5 (3) | C9—C10—C11 | 113.0 (4) |
N2—N3—C7 | 115.0 (3) | Br1B—C10—C11 | 120.6 (4) |
C6—N2—H2 | 121.00 | Br1A—C10—C9 | 123.3 (4) |
N3—N2—H2 | 121.00 | S1—C11—C10 | 111.1 (3) |
C2—C1—C6 | 121.7 (4) | C1—C2—H2A | 121.00 |
C5—C1—C6 | 119.4 (4) | C3—C2—H2A | 121.00 |
C2—C1—C5 | 118.9 (4) | N1—C3—H3 | 118.00 |
C1—C2—C3 | 118.3 (5) | C2—C3—H3 | 118.00 |
N1—C3—C2 | 124.7 (5) | N1—C4—H4 | 118.00 |
N1—C4—C5 | 123.4 (6) | C5—C4—H4 | 118.00 |
C1—C5—C4 | 118.1 (5) | C1—C5—H5 | 121.00 |
N2—C6—C1 | 113.7 (3) | C4—C5—H5 | 121.00 |
O1—C6—C1 | 121.6 (4) | N3—C7—H7 | 120.00 |
O1—C6—N2 | 124.7 (4) | C8—C7—H7 | 119.00 |
N3—C7—C8 | 121.0 (4) | C8—C9—H9 | 123.00 |
C7—C8—C9 | 126.8 (4) | C10—C9—H9 | 123.00 |
S1—C8—C7 | 122.3 (3) | S1—C11—H11 | 124.00 |
S1—C8—C9 | 110.9 (3) | C10—C11—H11 | 124.00 |
C8—C9—C10 | 113.0 (4) | ||
C11—S1—C8—C7 | 179.5 (5) | C2—C1—C6—N2 | −38.5 (6) |
C11—S1—C8—C9 | −0.5 (5) | C5—C1—C6—O1 | −39.9 (7) |
C8—S1—C11—C10 | −0.5 (5) | C5—C1—C6—N2 | 140.6 (5) |
C4—N1—C3—C2 | 2.2 (11) | C1—C2—C3—N1 | −1.5 (10) |
C3—N1—C4—C5 | −0.6 (11) | N1—C4—C5—C1 | −1.6 (10) |
C6—N2—N3—C7 | −172.8 (4) | N3—C7—C8—S1 | 5.3 (7) |
N3—N2—C6—O1 | 0.6 (6) | N3—C7—C8—C9 | −174.7 (5) |
N3—N2—C6—C1 | −179.9 (3) | S1—C8—C9—C10 | 1.4 (7) |
N2—N3—C7—C8 | −179.7 (4) | C7—C8—C9—C10 | −178.6 (5) |
C5—C1—C2—C3 | −0.9 (8) | C8—C9—C10—Br1A | 174.2 (4) |
C6—C1—C2—C3 | 178.3 (5) | C8—C9—C10—C11 | −1.9 (8) |
C2—C1—C5—C4 | 2.2 (8) | Br1A—C10—C11—S1 | −174.6 (3) |
C6—C1—C5—C4 | −176.9 (5) | C9—C10—C11—S1 | 1.4 (7) |
C2—C1—C6—O1 | 141.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.08 | 2.920 (4) | 165 |
C7—H7···O1i | 0.93 | 2.52 | 3.318 (5) | 144 |
C11—H11···N1ii | 0.93 | 2.60 | 3.277 (7) | 130 |
Symmetry codes: (i) x−1/4, −y+1/4, z−1/4; (ii) x+3/4, −y+1/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | C11H8BrN3OS |
Mr | 310.17 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 296 |
a, b, c (Å) | 14.3507 (6), 48.732 (2), 7.2115 (3) |
V (Å3) | 5043.3 (4) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 3.41 |
Crystal size (mm) | 0.26 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.567, 0.666 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12209, 2837, 1954 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.113, 1.04 |
No. of reflections | 2837 |
No. of parameters | 158 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.48 |
Absolute structure | Flack (1983), 1205 Friedal Pairs |
Absolute structure parameter | −0.002 (13) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.08 | 2.920 (4) | 165 |
C7—H7···O1i | 0.93 | 2.52 | 3.318 (5) | 144 |
C11—H11···N1ii | 0.93 | 2.60 | 3.277 (7) | 130 |
Symmetry codes: (i) x−1/4, −y+1/4, z−1/4; (ii) x+3/4, −y+1/4, z−1/4. |
Acknowledgements
AH greatfully acknowledges the the Higher Education Commission, Islamabad, Pakistan, for providing him with a scholarship under the Indigenous PhD Program (PIN 063–121531-PS3–127).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of synthesizing various derivatives of 4-bromothiophene-2-carbaldehyde (Shafiq et al., 2009), the title compound (I, Fig. 1), has been prepared. The metal complexes of (I) have been prepared and the biological studies of all the compounds are in progress.
The crystal structure of (II) N'-((thiophen-3-yl)methylene)isonicotinohydrazide (Jing et al., 2007) and (III) (E)-N'-((5-methylthiophen-2-yl)methylene)isonicotinohydrazide (Wang et al., 2007) have been published. The title compound (I) differs from both due to substitution moiety of bromo.
We have recently reported the crystal structure of (IV) N'-[(E)-(4-bromothiophen-2-yl)methylidene]benzohydrazide (Shafiq et al., 2009). Due to change of benzene ring (IV) with the pyridine (I) ring, the crystal structure has been substantially changed. The title compound crystalizes with single molecule, whereas in (IV) there are two molecules along with fractional quantity of water. In (I), the dihedral angle between two aromatic rings A (C1—C3/N1/C4/C5) and B (C8—C11/S1) is 27.61 (14)°. The molecules of present compound are stabilized in the form of polymeric chains extending along the diagonal of crystallographic ac-plane. The list of strong H-bondings is given in Table 1. Due to the heterocyclic rings, the Br-Atom is disordered over two sites with occupancy ratio of 0.804:0.196. There exist R21(6) ring motif (Bernstein et al., 1995) due to intermolecular H-bonding of type C—H···O and N—H···O (Fig. 2).