organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(4-Bromo-2-thienyl)methyl­ene]isonicotinohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 September 2009; accepted 14 September 2009; online 19 September 2009)

In title compound, C11H8BrN3OS, the dihedral angle between the two aromatic rings is 27.61 (14)° and the Br atom is disordered over two sites with an occupancy ratio of 0.804 (2):0.196 (2). In the crystal, the mol­ecules are linked by N—H⋯O, C—H⋯O and C—H⋯N inter­actions, resulting in chains.

Related literature

For related structures, see: Jing et al. (2007[Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.]); Wang et al. (2007[Wang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8BrN3OS

  • Mr = 310.17

  • Orthorhombic, F d d 2

  • a = 14.3507 (6) Å

  • b = 48.732 (2) Å

  • c = 7.2115 (3) Å

  • V = 5043.3 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 296 K

  • 0.26 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.567, Tmax = 0.666

  • 12209 measured reflections

  • 2837 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.04

  • 2837 reflections

  • 158 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1205 Friedal Pairs

  • Flack parameter: −0.002 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.08 2.920 (4) 165
C7—H7⋯O1i 0.93 2.52 3.318 (5) 144
C11—H11⋯N1ii 0.93 2.60 3.277 (7) 130
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [x+{\script{3\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of synthesizing various derivatives of 4-bromothiophene-2-carbaldehyde (Shafiq et al., 2009), the title compound (I, Fig. 1), has been prepared. The metal complexes of (I) have been prepared and the biological studies of all the compounds are in progress.

The crystal structure of (II) N'-((thiophen-3-yl)methylene)isonicotinohydrazide (Jing et al., 2007) and (III) (E)-N'-((5-methylthiophen-2-yl)methylene)isonicotinohydrazide (Wang et al., 2007) have been published. The title compound (I) differs from both due to substitution moiety of bromo.

We have recently reported the crystal structure of (IV) N'-[(E)-(4-bromothiophen-2-yl)methylidene]benzohydrazide (Shafiq et al., 2009). Due to change of benzene ring (IV) with the pyridine (I) ring, the crystal structure has been substantially changed. The title compound crystalizes with single molecule, whereas in (IV) there are two molecules along with fractional quantity of water. In (I), the dihedral angle between two aromatic rings A (C1—C3/N1/C4/C5) and B (C8—C11/S1) is 27.61 (14)°. The molecules of present compound are stabilized in the form of polymeric chains extending along the diagonal of crystallographic ac-plane. The list of strong H-bondings is given in Table 1. Due to the heterocyclic rings, the Br-Atom is disordered over two sites with occupancy ratio of 0.804:0.196. There exist R21(6) ring motif (Bernstein et al., 1995) due to intermolecular H-bonding of type C—H···O and N—H···O (Fig. 2).

Related literature top

For related structures, see: Jing et al. (2007); Shafiq et al. (2009); Wang et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of isoniazid (1.37 g, 0.01 mol) in ethanol (15 ml) was added 4-bromothiophene-2-carbaldehyde (1.91 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. Then it was allowed to cool to room temperature, filtered and washed with hot ethanol. The crude material was recrystallized in (1:3 v/v) 1,4-dioxan:ethanol, to afford light yellow needles of (I).

Refinement top

A large Fourier difference peak close to the Br-atom and higher values of its thermal parameters indicated the presence of disorder. The two parts of Br-atom were refined with equal ainisotropic displacement parameters (EADP). All other efforts like DFIX were utilized but the C10—Br1B bond could not be shortened.

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 Å for aromatic like H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I) which shows that molecules form polymeric chains with ring motifs due to H-bondings.
N'-[(E)-(4-Bromo-2-thienyl)methylene]isonicotinohydrazide top
Crystal data top
C11H8BrN3OSF(000) = 2464
Mr = 310.17Dx = 1.634 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2837 reflections
a = 14.3507 (6) Åθ = 3.0–27.9°
b = 48.732 (2) ŵ = 3.41 mm1
c = 7.2115 (3) ÅT = 296 K
V = 5043.3 (4) Å3Cut needle, light yellow
Z = 160.26 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2837 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 6463
Tmin = 0.567, Tmax = 0.666l = 99
12209 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0415P)2 + 9.3783P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2837 reflectionsΔρmax = 0.56 e Å3
158 parametersΔρmin = 0.48 e Å3
2 restraintsAbsolute structure: Flack (1983), 1205 Friedal Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (13)
Crystal data top
C11H8BrN3OSV = 5043.3 (4) Å3
Mr = 310.17Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 14.3507 (6) ŵ = 3.41 mm1
b = 48.732 (2) ÅT = 296 K
c = 7.2115 (3) Å0.26 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1954 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.666Rint = 0.035
12209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.56 e Å3
S = 1.04Δρmin = 0.48 e Å3
2837 reflectionsAbsolute structure: Flack (1983), 1205 Friedal Pairs
158 parametersAbsolute structure parameter: 0.002 (13)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.42406 (6)0.25903 (2)0.16312 (17)0.0946 (5)0.804 (2)
Br1B0.4270 (3)0.26462 (9)0.0262 (10)0.0946 (5)0.196 (2)
S10.44553 (8)0.17467 (2)0.0252 (2)0.0549 (4)
O10.27773 (19)0.09307 (6)0.2899 (5)0.0505 (10)
N10.0545 (3)0.06098 (14)0.3270 (10)0.099 (3)
N20.1935 (2)0.12740 (7)0.1634 (5)0.0406 (11)
N30.2717 (2)0.14261 (7)0.1259 (5)0.0424 (11)
C10.1129 (3)0.08803 (8)0.2787 (6)0.0418 (14)
C20.0333 (3)0.10184 (10)0.3343 (7)0.0527 (16)
C30.0467 (3)0.08712 (15)0.3572 (10)0.080 (3)
C40.0234 (5)0.04764 (13)0.2750 (10)0.092 (3)
C50.1084 (4)0.06041 (10)0.2517 (8)0.0620 (19)
C60.2039 (3)0.10290 (8)0.2448 (6)0.0382 (14)
C70.2561 (3)0.16678 (9)0.0670 (7)0.0460 (16)
C80.3315 (3)0.18499 (9)0.0213 (7)0.0470 (14)
C90.3246 (3)0.21142 (11)0.0287 (9)0.068 (2)
C100.4113 (3)0.22347 (9)0.0687 (9)0.0643 (19)
C110.4832 (3)0.20625 (11)0.0432 (9)0.0653 (18)
H20.139030.133460.135200.0485*
H2A0.034420.120660.355480.0632*
H30.099350.096500.397330.0962*
H40.019700.028850.253760.1106*
H50.161100.050440.218470.0746*
H70.195000.172780.053270.0554*
H90.268310.220800.036120.0813*
H110.545380.210940.060450.0783*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0709 (4)0.0603 (5)0.1526 (14)0.0081 (3)0.0142 (7)0.0410 (7)
Br1B0.0709 (4)0.0603 (5)0.1526 (14)0.0081 (3)0.0142 (7)0.0410 (7)
S10.0358 (5)0.0516 (7)0.0773 (9)0.0035 (5)0.0020 (6)0.0081 (6)
O10.0291 (14)0.0495 (17)0.073 (2)0.0004 (12)0.0118 (16)0.0034 (17)
N10.056 (3)0.111 (5)0.130 (5)0.041 (3)0.031 (3)0.053 (4)
N20.0250 (16)0.0437 (19)0.053 (2)0.0055 (14)0.0080 (15)0.0056 (16)
N30.0281 (16)0.049 (2)0.050 (2)0.0061 (15)0.0043 (15)0.0029 (16)
C10.0315 (19)0.048 (2)0.046 (3)0.0076 (17)0.0167 (19)0.007 (2)
C20.037 (2)0.062 (3)0.059 (3)0.0025 (19)0.002 (2)0.022 (2)
C30.039 (3)0.108 (5)0.094 (5)0.011 (3)0.012 (3)0.042 (4)
C40.091 (5)0.068 (4)0.118 (6)0.032 (3)0.041 (4)0.030 (4)
C50.062 (3)0.046 (3)0.078 (4)0.007 (2)0.026 (3)0.012 (3)
C60.0276 (19)0.043 (2)0.044 (3)0.0029 (16)0.0040 (17)0.0027 (19)
C70.029 (2)0.056 (3)0.053 (3)0.0051 (18)0.0089 (19)0.011 (2)
C80.034 (2)0.049 (2)0.058 (3)0.0006 (17)0.008 (2)0.006 (2)
C90.039 (2)0.057 (3)0.107 (5)0.002 (2)0.008 (3)0.026 (3)
C100.045 (3)0.046 (3)0.102 (4)0.007 (2)0.001 (3)0.017 (3)
C110.035 (2)0.063 (3)0.098 (4)0.003 (2)0.000 (3)0.015 (3)
Geometric parameters (Å, º) top
Br1A—C101.871 (5)C2—C31.364 (7)
Br1B—C102.041 (6)C4—C51.380 (9)
S1—C81.712 (4)C7—C81.438 (6)
S1—C111.704 (5)C8—C91.341 (7)
O1—C61.207 (5)C9—C101.406 (6)
N1—C31.297 (10)C10—C111.343 (6)
N1—C41.347 (9)C2—H2A0.9300
N2—N31.372 (4)C3—H30.9300
N2—C61.339 (5)C4—H40.9300
N3—C71.272 (6)C5—H50.9300
N2—H20.8600C7—H70.9300
C1—C21.385 (6)C9—H90.9300
C1—C51.362 (6)C11—H110.9300
C1—C61.513 (6)
C8—S1—C1191.9 (2)Br1A—C10—C11123.6 (4)
C3—N1—C4116.7 (5)Br1B—C10—C9118.5 (4)
N3—N2—C6118.5 (3)C9—C10—C11113.0 (4)
N2—N3—C7115.0 (3)Br1B—C10—C11120.6 (4)
C6—N2—H2121.00Br1A—C10—C9123.3 (4)
N3—N2—H2121.00S1—C11—C10111.1 (3)
C2—C1—C6121.7 (4)C1—C2—H2A121.00
C5—C1—C6119.4 (4)C3—C2—H2A121.00
C2—C1—C5118.9 (4)N1—C3—H3118.00
C1—C2—C3118.3 (5)C2—C3—H3118.00
N1—C3—C2124.7 (5)N1—C4—H4118.00
N1—C4—C5123.4 (6)C5—C4—H4118.00
C1—C5—C4118.1 (5)C1—C5—H5121.00
N2—C6—C1113.7 (3)C4—C5—H5121.00
O1—C6—C1121.6 (4)N3—C7—H7120.00
O1—C6—N2124.7 (4)C8—C7—H7119.00
N3—C7—C8121.0 (4)C8—C9—H9123.00
C7—C8—C9126.8 (4)C10—C9—H9123.00
S1—C8—C7122.3 (3)S1—C11—H11124.00
S1—C8—C9110.9 (3)C10—C11—H11124.00
C8—C9—C10113.0 (4)
C11—S1—C8—C7179.5 (5)C2—C1—C6—N238.5 (6)
C11—S1—C8—C90.5 (5)C5—C1—C6—O139.9 (7)
C8—S1—C11—C100.5 (5)C5—C1—C6—N2140.6 (5)
C4—N1—C3—C22.2 (11)C1—C2—C3—N11.5 (10)
C3—N1—C4—C50.6 (11)N1—C4—C5—C11.6 (10)
C6—N2—N3—C7172.8 (4)N3—C7—C8—S15.3 (7)
N3—N2—C6—O10.6 (6)N3—C7—C8—C9174.7 (5)
N3—N2—C6—C1179.9 (3)S1—C8—C9—C101.4 (7)
N2—N3—C7—C8179.7 (4)C7—C8—C9—C10178.6 (5)
C5—C1—C2—C30.9 (8)C8—C9—C10—Br1A174.2 (4)
C6—C1—C2—C3178.3 (5)C8—C9—C10—C111.9 (8)
C2—C1—C5—C42.2 (8)Br1A—C10—C11—S1174.6 (3)
C6—C1—C5—C4176.9 (5)C9—C10—C11—S11.4 (7)
C2—C1—C6—O1141.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.082.920 (4)165
C7—H7···O1i0.932.523.318 (5)144
C11—H11···N1ii0.932.603.277 (7)130
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x+3/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC11H8BrN3OS
Mr310.17
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)14.3507 (6), 48.732 (2), 7.2115 (3)
V3)5043.3 (4)
Z16
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.26 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.567, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
12209, 2837, 1954
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.04
No. of reflections2837
No. of parameters158
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.48
Absolute structureFlack (1983), 1205 Friedal Pairs
Absolute structure parameter0.002 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.082.920 (4)165
C7—H7···O1i0.932.523.318 (5)144
C11—H11···N1ii0.932.603.277 (7)130
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x+3/4, y+1/4, z1/4.
 

Acknowledgements

AH greatfully acknowledges the the Higher Education Commission, Islamabad, Pakistan, for providing him with a scholarship under the Indigenous PhD Program (PIN 063–121531-PS3–127).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds