organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-5-[(5,5-di­methyl-4,5-di­hydro­isoxazol-3-yl)sulfonyl­meth­yl]-3-methyl-1-(2,2,2-tri­fluoro­ethyl)-1H-pyrazole

aKey Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
*Correspondence e-mail: jning502@yahoo.com.cn

(Received 14 September 2009; accepted 23 September 2009; online 30 September 2009)

The mol­ecule of the title compound, C12H15ClF3N3O3S, is twisted, as indicated by the C—S—C—C torsion angle of 66.00 (18)° for the atoms linking the ring systems. An intra­molecular C—H⋯F short contact occurs. In the crystal, non-classical C—H⋯O inter­actions, one of which has a short H⋯O contact of 2.28 Å, link the mol­ecules.

Related literature

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Hirai et al. (2002[Hirai, K., Uchida, A. & Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 179-289. Heidelberg: Springer-Verlag.]); Shiga et al. (2003[Shiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313-314.]); Ohno et al. (2004[Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.]); Sabbagh et al. (2009[Sabbagh, O. I., Raraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746-3753.]); Sridhar et al. (2004[Sridhar, R., Perumal, P. T., Etti, S., Shanmugam, G., Ponnuswamy, M. N., Prabayathy, V. R. & Mathivanan, N. (2004). Bioorg. Med. Chem. Lett. 14, 6035-6040.]); Zheng et al. (2009[Zheng, L. W., Wu, L. L., Zhao, B. X., Dong, W. L. & Miao, J. Y. (2009). Bioorg. Med. Chem. 17, 1957-1962.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15ClF3N3O3S

  • Mr = 373.78

  • Monoclinic, P 21 /n

  • a = 16.034 (3) Å

  • b = 5.4319 (11) Å

  • c = 19.069 (4) Å

  • β = 106.71 (3)°

  • V = 1590.7 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.83 mm−1

  • T = 173 K

  • 0.39 × 0.26 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2003[Higashi, T. (2003). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.317, Tmax = 0.448

  • 11348 measured reflections

  • 2891 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.09

  • 2891 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯F1 0.99 2.44 3.229 (3) 136
C4—H4A⋯O3i 0.98 2.60 3.325 (3) 131
C5—H5A⋯O2ii 0.99 2.31 3.146 (3) 141
C7—H7B⋯O1iii 0.99 2.28 3.265 (3) 171
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazoles are an important class of compounds, which possess widespread pharmacological properties in pharmaceuticals (Sridhar et al., 2004; Zheng et al., 2009; Sabbagh et al., 2009) and agrochemicals (Shiga et al., 2003; Ohno et al., 2004). Various pyrazole derivatives with potent herbicidal activity have been synthesized and some are in use as herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl (Hirai et al., 2002). Recently, the new title compound (I) was synthesized in our group with high herbicidal activity. The crystal structure of the title compound is shown in Fig. 1.

Related literature top

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Hirai et al. (2002); Shiga et al. (2003); Ohno et al. (2004); Sabbagh et al. (2009); Sridhar et al. (2004); Zheng et al. (2009).

Experimental top

The title compound (0.2 g) was dissolved in acetone (50 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

Refinement top

The H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
4-Chloro-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]- 3-methyl-1-(2,2,2-trifluoroethyl)-1H-pyrazole top
Crystal data top
C12H15ClF3N3O3SF(000) = 768
Mr = 373.78Dx = 1.561 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 11348 reflections
a = 16.034 (3) Åθ = 3.2–68.2°
b = 5.4319 (11) ŵ = 3.83 mm1
c = 19.069 (4) ÅT = 173 K
β = 106.71 (3)°Block, colourless
V = 1590.7 (6) Å30.39 × 0.26 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2891 independent reflections
Radiation source: rotating anode2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 68.2°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Higashi, 2003)
h = 1619
Tmin = 0.317, Tmax = 0.448k = 65
11348 measured reflectionsl = 2220
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0203P)2 + 1.0073P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2891 reflectionsΔρmax = 0.39 e Å3
212 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (3)
Crystal data top
C12H15ClF3N3O3SV = 1590.7 (6) Å3
Mr = 373.78Z = 4
Monoclinic, P21/nCu Kα radiation
a = 16.034 (3) ŵ = 3.83 mm1
b = 5.4319 (11) ÅT = 173 K
c = 19.069 (4) Å0.39 × 0.26 × 0.25 mm
β = 106.71 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2891 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2003)
2568 reflections with I > 2σ(I)
Tmin = 0.317, Tmax = 0.448Rint = 0.073
11348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
2891 reflectionsΔρmin = 0.36 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44152 (4)0.93466 (11)0.09341 (4)0.03950 (19)
S10.36881 (3)0.46279 (10)0.24281 (3)0.02353 (17)
F10.10868 (10)0.5476 (3)0.06789 (10)0.0610 (5)
F20.05756 (9)0.1893 (3)0.03398 (9)0.0584 (5)
F30.09944 (9)0.4206 (3)0.04032 (8)0.0519 (5)
O10.35709 (10)0.2075 (3)0.22345 (9)0.0320 (4)
O20.34961 (10)0.5475 (3)0.30760 (9)0.0355 (4)
O30.60616 (9)0.5020 (3)0.23839 (9)0.0295 (4)
N10.29777 (12)0.3998 (4)0.01380 (10)0.0308 (5)
N20.27450 (11)0.4064 (3)0.04952 (10)0.0252 (4)
N30.52262 (11)0.4070 (3)0.22312 (10)0.0273 (4)
C10.37126 (13)0.6956 (4)0.06043 (13)0.0286 (5)
C20.35682 (14)0.5758 (5)0.00755 (13)0.0311 (5)
C30.31789 (13)0.5852 (4)0.09606 (12)0.0238 (5)
C40.39748 (17)0.6278 (6)0.06716 (14)0.0478 (7)
H4A0.37370.51480.10810.072*
H4B0.46060.60490.04860.072*
H4C0.38480.79790.08400.072*
C50.20776 (14)0.2398 (4)0.05769 (12)0.0277 (5)
H5A0.21920.19680.11010.033*
H5B0.21020.08610.03040.033*
C60.11822 (15)0.3496 (5)0.03000 (14)0.0358 (6)
C70.30537 (13)0.6436 (4)0.16871 (12)0.0252 (5)
H7A0.24310.62110.16540.030*
H7B0.31970.81930.17980.030*
C80.47791 (13)0.5464 (4)0.25218 (11)0.0217 (5)
C90.61812 (13)0.6994 (4)0.29469 (12)0.0262 (5)
C100.52374 (13)0.7681 (4)0.29159 (13)0.0280 (5)
H10A0.51610.78440.34110.034*
H10B0.50450.92140.26350.034*
C110.66650 (17)0.5831 (5)0.36693 (14)0.0415 (7)
H11A0.72120.51210.36320.062*
H11B0.63060.45310.37900.062*
H11C0.67910.70870.40550.062*
C120.66893 (16)0.9029 (5)0.27166 (17)0.0426 (7)
H12A0.72490.83820.26880.064*
H12B0.67911.03650.30770.064*
H12C0.63570.96580.22360.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0318 (3)0.0362 (4)0.0491 (4)0.0112 (2)0.0094 (3)0.0061 (3)
S10.0209 (3)0.0256 (3)0.0244 (3)0.0035 (2)0.0071 (2)0.0022 (2)
F10.0316 (8)0.0694 (12)0.0759 (13)0.0110 (8)0.0057 (8)0.0260 (10)
F20.0300 (8)0.0797 (13)0.0579 (10)0.0223 (8)0.0005 (7)0.0141 (9)
F30.0366 (8)0.0723 (12)0.0408 (9)0.0071 (8)0.0018 (7)0.0211 (8)
O10.0305 (9)0.0225 (9)0.0404 (10)0.0064 (7)0.0060 (7)0.0002 (7)
O20.0297 (9)0.0528 (12)0.0271 (9)0.0028 (8)0.0132 (7)0.0060 (8)
O30.0204 (8)0.0306 (9)0.0379 (10)0.0020 (6)0.0091 (7)0.0091 (7)
N10.0277 (10)0.0423 (12)0.0227 (10)0.0014 (9)0.0077 (8)0.0003 (9)
N20.0234 (9)0.0295 (10)0.0227 (10)0.0022 (8)0.0066 (8)0.0004 (8)
N30.0219 (9)0.0281 (10)0.0308 (10)0.0018 (8)0.0060 (8)0.0038 (8)
C10.0193 (11)0.0307 (13)0.0338 (13)0.0010 (9)0.0047 (9)0.0068 (10)
C20.0226 (11)0.0424 (14)0.0279 (13)0.0016 (10)0.0068 (10)0.0081 (10)
C30.0207 (10)0.0237 (11)0.0262 (12)0.0025 (8)0.0053 (9)0.0014 (9)
C40.0345 (14)0.079 (2)0.0333 (15)0.0023 (14)0.0147 (11)0.0113 (14)
C50.0269 (11)0.0280 (12)0.0261 (12)0.0059 (9)0.0043 (9)0.0015 (9)
C60.0242 (12)0.0444 (15)0.0368 (14)0.0086 (11)0.0054 (10)0.0017 (12)
C70.0212 (10)0.0238 (11)0.0309 (12)0.0018 (9)0.0080 (9)0.0027 (9)
C80.0198 (10)0.0211 (11)0.0231 (11)0.0010 (8)0.0043 (9)0.0008 (8)
C90.0221 (11)0.0208 (11)0.0335 (13)0.0012 (9)0.0048 (9)0.0038 (9)
C100.0221 (11)0.0248 (12)0.0365 (13)0.0030 (9)0.0076 (9)0.0079 (10)
C110.0348 (14)0.0444 (16)0.0367 (15)0.0013 (11)0.0034 (11)0.0013 (12)
C120.0295 (13)0.0306 (14)0.070 (2)0.0011 (10)0.0186 (13)0.0039 (13)
Geometric parameters (Å, º) top
Cl1—C11.716 (2)C4—H4B0.9800
S1—O21.4324 (16)C4—H4C0.9800
S1—O11.4333 (16)C5—C61.503 (3)
S1—C81.766 (2)C5—H5A0.9900
S1—C71.780 (2)C5—H5B0.9900
F1—C61.329 (3)C7—H7A0.9900
F2—C61.324 (3)C7—H7B0.9900
F3—C61.344 (3)C8—C101.496 (3)
O3—N31.386 (2)C9—C121.511 (3)
O3—C91.490 (3)C9—C111.511 (3)
N1—C21.327 (3)C9—C101.543 (3)
N1—N21.363 (2)C10—H10A0.9900
N2—C31.364 (3)C10—H10B0.9900
N2—C51.444 (3)C11—H11A0.9800
N3—C81.274 (3)C11—H11B0.9800
C1—C31.374 (3)C11—H11C0.9800
C1—C21.409 (3)C12—H12A0.9800
C2—C41.491 (3)C12—H12B0.9800
C3—C71.490 (3)C12—H12C0.9800
C4—H4A0.9800
O2—S1—O1119.23 (10)F2—C6—C5111.2 (2)
O2—S1—C8106.40 (10)F1—C6—C5112.21 (19)
O1—S1—C8109.12 (10)F3—C6—C5112.4 (2)
O2—S1—C7106.96 (10)C3—C7—S1114.93 (15)
O1—S1—C7109.07 (10)C3—C7—H7A108.5
C8—S1—C7105.17 (10)S1—C7—H7A108.5
N3—O3—C9109.60 (15)C3—C7—H7B108.5
C2—N1—N2105.74 (19)S1—C7—H7B108.5
N1—N2—C3112.16 (18)H7A—C7—H7B107.5
N1—N2—C5118.62 (18)N3—C8—C10116.13 (19)
C3—N2—C5129.16 (19)N3—C8—S1117.92 (16)
C8—N3—O3108.56 (17)C10—C8—S1125.96 (16)
C3—C1—C2107.0 (2)O3—C9—C12106.57 (19)
C3—C1—Cl1125.86 (19)O3—C9—C11106.36 (18)
C2—C1—Cl1127.13 (18)C12—C9—C11113.1 (2)
N1—C2—C1109.9 (2)O3—C9—C10103.00 (16)
N1—C2—C4121.7 (2)C12—C9—C10114.63 (19)
C1—C2—C4128.5 (2)C11—C9—C10112.1 (2)
N2—C3—C1105.2 (2)C8—C10—C999.16 (17)
N2—C3—C7125.2 (2)C8—C10—H10A111.9
C1—C3—C7129.5 (2)C9—C10—H10A111.9
C2—C4—H4A109.5C8—C10—H10B111.9
C2—C4—H4B109.5C9—C10—H10B111.9
H4A—C4—H4B109.5H10A—C10—H10B109.6
C2—C4—H4C109.5C9—C11—H11A109.5
H4A—C4—H4C109.5C9—C11—H11B109.5
H4B—C4—H4C109.5H11A—C11—H11B109.5
N2—C5—C6112.07 (19)C9—C11—H11C109.5
N2—C5—H5A109.2H11A—C11—H11C109.5
C6—C5—H5A109.2H11B—C11—H11C109.5
N2—C5—H5B109.2C9—C12—H12A109.5
C6—C5—H5B109.2C9—C12—H12B109.5
H5A—C5—H5B107.9H12A—C12—H12B109.5
F2—C6—F1107.5 (2)C9—C12—H12C109.5
F2—C6—F3106.76 (19)H12A—C12—H12C109.5
F1—C6—F3106.4 (2)H12B—C12—H12C109.5
C2—N1—N2—C30.1 (2)N2—C3—C7—S186.0 (2)
C2—N1—N2—C5177.64 (19)C1—C3—C7—S195.8 (3)
C9—O3—N3—C811.2 (2)O2—S1—C7—C3178.87 (16)
N2—N1—C2—C10.0 (2)O1—S1—C7—C350.91 (19)
N2—N1—C2—C4179.3 (2)C8—S1—C7—C366.00 (18)
C3—C1—C2—N10.2 (3)O3—N3—C8—C101.4 (3)
Cl1—C1—C2—N1180.00 (17)O3—N3—C8—S1178.52 (13)
C3—C1—C2—C4179.0 (2)O2—S1—C8—N3148.32 (18)
Cl1—C1—C2—C40.8 (4)O1—S1—C8—N318.5 (2)
N1—N2—C3—C10.2 (2)C7—S1—C8—N398.41 (19)
C5—N2—C3—C1177.4 (2)O2—S1—C8—C1031.6 (2)
N1—N2—C3—C7178.34 (19)O1—S1—C8—C10161.43 (18)
C5—N2—C3—C71.2 (3)C7—S1—C8—C1081.7 (2)
C2—C1—C3—N20.2 (2)N3—O3—C9—C12139.32 (18)
Cl1—C1—C3—N2179.92 (16)N3—O3—C9—C1199.8 (2)
C2—C1—C3—C7178.3 (2)N3—O3—C9—C1018.3 (2)
Cl1—C1—C3—C71.6 (3)N3—C8—C10—C912.4 (3)
N1—N2—C5—C689.8 (2)S1—C8—C10—C9167.48 (16)
C3—N2—C5—C687.3 (3)O3—C9—C10—C817.0 (2)
N2—C5—C6—F2176.34 (19)C12—C9—C10—C8132.3 (2)
N2—C5—C6—F163.3 (3)C11—C9—C10—C896.9 (2)
N2—C5—C6—F356.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F10.992.443.229 (3)136
C4—H4A···O3i0.982.603.325 (3)131
C5—H5A···O2ii0.992.313.146 (3)141
C7—H7B···O1iii0.992.283.265 (3)171
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15ClF3N3O3S
Mr373.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)16.034 (3), 5.4319 (11), 19.069 (4)
β (°) 106.71 (3)
V3)1590.7 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.83
Crystal size (mm)0.39 × 0.26 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2003)
Tmin, Tmax0.317, 0.448
No. of measured, independent and
observed [I > 2σ(I)] reflections
11348, 2891, 2568
Rint0.073
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.09
No. of reflections2891
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.36

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F10.992.443.229 (3)136
C4—H4A···O3i0.982.603.325 (3)131
C5—H5A···O2ii0.992.313.146 (3)141
C7—H7B···O1iii0.992.283.265 (3)171
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (No. 2010CB126106 and No. 2006CB101907), and the 863 high-tech key project of China (2006AA10A203).

References

First citationHigashi, T. (2003). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHirai, K., Uchida, A. & Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 179–289. Heidelberg: Springer-Verlag.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15–26.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSabbagh, O. I., Raraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313–314.  Web of Science CrossRef CAS Google Scholar
First citationSridhar, R., Perumal, P. T., Etti, S., Shanmugam, G., Ponnuswamy, M. N., Prabayathy, V. R. & Mathivanan, N. (2004). Bioorg. Med. Chem. Lett. 14, 6035–6040.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, L. W., Wu, L. L., Zhao, B. X., Dong, W. L. & Miao, J. Y. (2009). Bioorg. Med. Chem. 17, 1957–1962.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds