metal-organic compounds
Dichlorido(6,6′-dimethyl-2,2′-bipyridine-κ2N,N′)zinc(II)
aDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran, bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com
In the title compound, [ZnCl2(C12H12N2)], the complete molecule is generated by crystallographic mirror symmetry, with the Zn atom and both chloride ions lying on the reflecting plane, yielding a distorted ZnN2Cl2 tetrahedral coordination for the metal ion. In the crystal, there are π–π contacts between the pyridine rings [centroid–centroid distance = 3.7857 (17) Å].
Related literature
For related structures containing Zn bonded to two chloride ions and a phenanthroline/bipyridine derivative, see: Ahmadi et al. (2008, 2009a,b); Alizadeh et al. (2009); Gruia et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Khoshtarkib et al. (2009); Kozhevnikov et al. (2006); Liu et al. (2004); Preston & Kennard (1969); Reimann et al. (1966).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809038215/hb5106sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038215/hb5106Isup2.hkl
A solution of 6,6'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnCl2 (0.15 g, 0.88 mmol) in acetonitrile (10 ml) and the resulting colourless solution was stirred for 20 min at at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prisms of (I) were isolated (yield 0.26 g, 73.7%).
All H atoms were positioned geometrically, with C—H = 0.93–0.96Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) x,-y + 3/2,z] | |
Fig. 2. Tha unit-cell packing of (I). |
[ZnCl2(C12H12N2)] | F(000) = 324 |
Mr = 320.53 | Dx = 1.611 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1170 reflections |
a = 7.6957 (15) Å | θ = 2.8–30.6° |
b = 11.266 (2) Å | µ = 2.24 mm−1 |
c = 8.1431 (16) Å | T = 298 K |
β = 110.61 (3)° | Prism, colourless |
V = 660.8 (3) Å3 | 0.40 × 0.33 × 0.30 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 2075 independent reflections |
Radiation source: fine-focus sealed tube | 1972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 30.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −10→10 |
Tmin = 0.421, Tmax = 0.512 | k = −16→16 |
8852 measured reflections | l = −11→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.4143P] where P = (Fo2 + 2Fc2)/3 |
2075 reflections | (Δ/σ)max < 0.001 |
83 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[ZnCl2(C12H12N2)] | V = 660.8 (3) Å3 |
Mr = 320.53 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.6957 (15) Å | µ = 2.24 mm−1 |
b = 11.266 (2) Å | T = 298 K |
c = 8.1431 (16) Å | 0.40 × 0.33 × 0.30 mm |
β = 110.61 (3)° |
Bruker SMART CCD diffractometer | 2075 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 1972 reflections with I > 2σ(I) |
Tmin = 0.421, Tmax = 0.512 | Rint = 0.043 |
8852 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.70 e Å−3 |
2075 reflections | Δρmin = −0.55 e Å−3 |
83 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9103 (5) | 1.0397 (3) | 0.7493 (4) | 0.0605 (7) | |
H1A | 0.8626 | 1.0161 | 0.8386 | 0.091* | |
H1B | 0.9085 | 1.1247 | 0.7405 | 0.091* | |
H1C | 1.0355 | 1.0117 | 0.7793 | 0.091* | |
C2 | 0.7921 (3) | 0.9875 (2) | 0.5768 (3) | 0.0415 (5) | |
C3 | 0.6959 (4) | 1.0566 (2) | 0.4331 (4) | 0.0525 (6) | |
H3 | 0.7041 | 1.1389 | 0.4413 | 0.063* | |
C4 | 0.5891 (4) | 1.0046 (3) | 0.2791 (4) | 0.0524 (6) | |
H4 | 0.5246 | 1.0512 | 0.1825 | 0.063* | |
C5 | 0.5776 (3) | 0.8820 (2) | 0.2679 (3) | 0.0424 (5) | |
H5 | 0.5053 | 0.8449 | 0.1644 | 0.051* | |
C6 | 0.6762 (3) | 0.81599 (18) | 0.4143 (3) | 0.0317 (4) | |
N1 | 0.7813 (2) | 0.86822 (16) | 0.5661 (2) | 0.0330 (3) | |
Cl1 | 1.20088 (11) | 0.7500 | 0.88188 (13) | 0.0521 (2) | |
Cl2 | 0.74082 (14) | 0.7500 | 0.94980 (13) | 0.0511 (2) | |
Zn1 | 0.89560 (5) | 0.7500 | 0.76788 (4) | 0.03392 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0688 (19) | 0.0401 (13) | 0.0625 (17) | −0.0094 (12) | 0.0104 (15) | −0.0154 (12) |
C2 | 0.0457 (12) | 0.0306 (10) | 0.0480 (12) | −0.0039 (8) | 0.0162 (10) | −0.0032 (8) |
C3 | 0.0694 (17) | 0.0281 (10) | 0.0616 (16) | 0.0033 (10) | 0.0249 (14) | 0.0063 (10) |
C4 | 0.0641 (16) | 0.0434 (13) | 0.0473 (13) | 0.0122 (12) | 0.0168 (12) | 0.0161 (11) |
C5 | 0.0453 (12) | 0.0424 (12) | 0.0342 (10) | 0.0048 (9) | 0.0074 (9) | 0.0057 (9) |
C6 | 0.0326 (9) | 0.0308 (9) | 0.0300 (8) | 0.0014 (7) | 0.0091 (7) | 0.0016 (7) |
N1 | 0.0341 (8) | 0.0288 (8) | 0.0328 (8) | −0.0010 (6) | 0.0075 (6) | −0.0002 (6) |
Cl1 | 0.0325 (4) | 0.0642 (6) | 0.0492 (5) | 0.000 | 0.0014 (3) | 0.000 |
Cl2 | 0.0548 (5) | 0.0567 (5) | 0.0479 (4) | 0.000 | 0.0255 (4) | 0.000 |
Zn1 | 0.03172 (18) | 0.03621 (19) | 0.02830 (18) | 0.000 | 0.00368 (12) | 0.000 |
C1—C2 | 1.499 (4) | C4—H4 | 0.9300 |
C1—H1A | 0.9600 | C5—C6 | 1.383 (3) |
C1—H1B | 0.9600 | C5—H5 | 0.9300 |
C1—H1C | 0.9600 | C6—N1 | 1.350 (3) |
C2—N1 | 1.347 (3) | C6—C6i | 1.487 (4) |
C2—C3 | 1.384 (4) | Zn1—N1 | 2.0569 (18) |
C3—C4 | 1.366 (4) | Zn1—Cl1 | 2.2013 (11) |
C3—H3 | 0.9300 | Zn1—Cl2 | 2.2035 (10) |
C4—C5 | 1.386 (4) | Zn1—N1i | 2.0569 (18) |
C2—C1—H1A | 109.5 | C6—C5—C4 | 118.4 (2) |
C2—C1—H1B | 109.5 | C6—C5—H5 | 120.8 |
H1A—C1—H1B | 109.5 | C4—C5—H5 | 120.8 |
C2—C1—H1C | 109.5 | N1—C6—C5 | 121.6 (2) |
H1A—C1—H1C | 109.5 | N1—C6—C6i | 115.83 (11) |
H1B—C1—H1C | 109.5 | C5—C6—C6i | 122.51 (14) |
N1—C2—C3 | 120.3 (2) | C2—N1—C6 | 119.82 (19) |
N1—C2—C1 | 117.1 (2) | C2—N1—Zn1 | 126.50 (16) |
C3—C2—C1 | 122.6 (2) | C6—N1—Zn1 | 113.51 (13) |
C4—C3—C2 | 120.3 (2) | N1i—Zn1—N1 | 80.71 (10) |
C4—C3—H3 | 119.8 | N1i—Zn1—Cl1 | 115.45 (6) |
C2—C3—H3 | 119.8 | N1—Zn1—Cl1 | 115.45 (6) |
C3—C4—C5 | 119.5 (2) | N1i—Zn1—Cl2 | 110.90 (6) |
C3—C4—H4 | 120.3 | N1—Zn1—Cl2 | 110.90 (6) |
C5—C4—H4 | 120.3 | Cl1—Zn1—Cl2 | 117.76 (5) |
N1—C2—C3—C4 | 0.0 (4) | C5—C6—N1—C2 | −0.2 (3) |
C1—C2—C3—C4 | −179.6 (3) | C6i—C6—N1—C2 | 178.78 (16) |
C2—C3—C4—C5 | 0.1 (5) | C5—C6—N1—Zn1 | 175.34 (17) |
C3—C4—C5—C6 | −0.2 (4) | C6i—C6—N1—Zn1 | −5.7 (3) |
C4—C5—C6—N1 | 0.3 (4) | C2—N1—Zn1—N1i | −178.10 (16) |
C4—C5—C6—C6i | −178.63 (19) | C6—N1—Zn1—N1i | 6.69 (17) |
C3—C2—N1—C6 | 0.0 (4) | C2—N1—Zn1—Cl1 | −64.2 (2) |
C1—C2—N1—C6 | 179.7 (2) | C6—N1—Zn1—Cl1 | 120.55 (13) |
C3—C2—N1—Zn1 | −174.88 (19) | C2—N1—Zn1—Cl2 | 73.0 (2) |
C1—C2—N1—Zn1 | 4.7 (3) | C6—N1—Zn1—Cl2 | −102.24 (14) |
Symmetry code: (i) x, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C12H12N2)] |
Mr | 320.53 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 298 |
a, b, c (Å) | 7.6957 (15), 11.266 (2), 8.1431 (16) |
β (°) | 110.61 (3) |
V (Å3) | 660.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.24 |
Crystal size (mm) | 0.40 × 0.33 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.421, 0.512 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8852, 2075, 1972 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.101, 1.26 |
No. of reflections | 2075 |
No. of parameters | 83 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.55 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Zn1—N1 | 2.0569 (18) | Zn1—Cl2 | 2.2035 (10) |
Zn1—Cl1 | 2.2013 (11) | ||
N1i—Zn1—N1 | 80.71 (10) |
Symmetry code: (i) x, −y+3/2, z. |
Acknowledgements
We are grateful to the Damghan University of Basic Sciences and Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009a). Acta Cryst. E65, m848–m849. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009b). Acta Cryst. E65, m1169–m1170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840. Web of Science CSD CrossRef CAS Google Scholar
Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854. Web of Science CSD CrossRef CAS Google Scholar
Khoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739–m740. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025–7029. Web of Science CSD CrossRef CAS Google Scholar
Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079. Web of Science CSD CrossRef PubMed Google Scholar
Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968. Google Scholar
Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we reported the synthes and crystal structure of [ZnCl2(phend)], (II), (Khoshtarkib et al., 2009), [HgBr2(2,9-dmphen)], (III), (Alizadeh et al., 2009), [HgCl2(2,9-dmPh2phen)].0.5 CH3CN, (IV) (Ahmadi, et al., 2009a) and [Pb4(NO3)8(6-mbpy)4], (V), (Ahmadi, et al., 2009b) [where phend is phenanthridine, 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline, 2,9-dmPh2phen is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and 6-mbpy is 6-methyl-2,2'-bipyridine].
There are several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (VI), (Khan & Tuck, 1984), [ZnCl2(biim)], (VII), (Gruia et al., 2007), [ZnCl2(phbipy)], (IIX), (Kozhevnikov et al., 2006), [ZnCl2(phen)], (IX), (Reimann et al., 1966), [ZnCl2(dmphen)], (X), (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (XI), (Liu et al., 2004), [ZnCl2(dm4bt)], (XII), (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (XIII), (Khalighi et al., 2008) and [ZnCl2(6-mbpy)], (XIV), (Ahmadi, Kalateh, Ebadi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole and 5,5'-dmbpy 5,5'-dimethyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).
The asymmetric unit of the title compound, (I), (Fig. 1), contains half molecule. The ZnII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 6,6'-dimethyl-2,2'-bipyridine and two terminal Cl atoms. The Zn—Cl and Zn—N bond lengths and angles are collected in Table 1.
In the crystal structure, the π-π contacts between the rings A (N1/C2—C6) and rings A, Cg2···Cg2i [distance = 3.7857 (17) Å, symmetry cods: 1-X,2-Y,1-Z]. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).