organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(3-Phenyl­allyl­­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 18 September 2009; accepted 24 September 2009; online 30 September 2009)

In the title compound, C18H18O4, the 1,3-dioxane ring adopts a distorted envelope conformation with the C atom common to the cyclo­hexane ring forming the flap. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur.

Related literature

For background information on spiro-compounds, see: Jiang et al. (1998[Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185-3189.]); Lian et al. (2008[Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.]); Wei et al. (2008[Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Or. C. 28, 1501-1514.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Triclinic, [P \overline 1]

  • a = 7.1177 (14) Å

  • b = 9.5506 (19) Å

  • c = 11.734 (2) Å

  • α = 106.82 (3)°

  • β = 100.14 (3)°

  • γ = 93.35 (3)°

  • V = 746.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 7448 measured reflections

  • 3401 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.130

  • S = 1.17

  • 3401 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.97 2.52 3.440 (2) 158
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro compounds are widely used in medicine, catalysis and optical materials (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of (Z)-3-phenylacrylaldehyde (7.92g, 0.06 mol) was added. The solution was then filtered and concentrated. Yellow blocks of (I) were obtained by evaporation of a petroleum ether–ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
(Z)-3-(3-Phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C18H18O4Z = 2
Mr = 298.32F(000) = 316
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1177 (14) ÅCell parameters from 3401 reflections
b = 9.5506 (19) Åθ = 3.1–27.5°
c = 11.734 (2) ŵ = 0.09 mm1
α = 106.82 (3)°T = 293 K
β = 100.14 (3)°Block, yellow
γ = 93.35 (3)°0.22 × 0.18 × 0.10 mm
V = 746.6 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2309 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 89
7448 measured reflectionsk = 1212
3401 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0724P)2]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H18O4γ = 93.35 (3)°
Mr = 298.32V = 746.6 (3) Å3
Triclinic, P1Z = 2
a = 7.1177 (14) ÅMo Kα radiation
b = 9.5506 (19) ŵ = 0.09 mm1
c = 11.734 (2) ÅT = 293 K
α = 106.82 (3)°0.22 × 0.18 × 0.10 mm
β = 100.14 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2309 reflections with I > 2σ(I)
7448 measured reflectionsRint = 0.016
3401 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.17Δρmax = 0.30 e Å3
3401 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.07551 (13)0.64682 (9)0.13593 (9)0.0440 (3)
O30.27862 (12)0.86963 (9)0.18966 (9)0.0435 (3)
C180.01600 (18)0.86915 (14)0.26210 (12)0.0386 (3)
O20.18747 (14)0.63080 (11)0.20875 (11)0.0555 (3)
C170.05451 (19)0.70896 (14)0.20042 (13)0.0408 (3)
C110.19207 (18)0.73899 (13)0.09196 (12)0.0375 (3)
C120.07076 (19)0.77924 (15)0.01133 (13)0.0443 (3)
H12A0.02510.83960.01950.053*
H12B0.00420.69020.07230.053*
C100.35558 (19)0.65608 (14)0.05319 (14)0.0440 (3)
H10A0.30430.56040.00420.053*
H10B0.43530.64050.12350.053*
C160.16915 (19)0.94609 (15)0.26336 (13)0.0443 (3)
C40.2995 (2)1.28109 (15)0.52506 (13)0.0430 (3)
C140.1418 (2)1.08555 (15)0.39392 (13)0.0450 (3)
H14A0.03151.15000.40690.054*
C150.15033 (19)0.93622 (15)0.32054 (13)0.0426 (3)
H15A0.26350.87670.31160.051*
O10.23340 (15)1.06908 (12)0.32633 (13)0.0728 (4)
C130.2902 (2)1.13463 (16)0.44451 (13)0.0453 (3)
H13A0.39941.06740.42600.054*
C50.4695 (2)1.31394 (17)0.56535 (14)0.0511 (4)
H5A0.57451.24180.54080.061*
C90.4779 (2)0.74002 (16)0.00542 (15)0.0520 (4)
H9A0.54220.83020.05510.062*
H9B0.57570.68070.03460.062*
C30.1442 (2)1.39115 (17)0.56447 (14)0.0505 (4)
H3A0.02871.37160.53990.061*
C60.4845 (2)1.45175 (18)0.64115 (15)0.0576 (4)
H6A0.59871.47170.66760.069*
C80.3571 (2)0.77756 (18)0.11085 (16)0.0584 (4)
H8A0.30420.68750.17550.070*
H8B0.43760.83630.14260.070*
C20.1606 (2)1.52867 (18)0.63955 (15)0.0585 (4)
H2A0.05631.60150.66490.070*
C70.1938 (2)0.86284 (17)0.06957 (15)0.0551 (4)
H7A0.24710.95770.01150.066*
H7B0.11400.88030.13900.066*
C10.3313 (3)1.55903 (18)0.67735 (15)0.0590 (4)
H1A0.34201.65230.72740.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0515 (5)0.0329 (5)0.0487 (6)0.0045 (4)0.0164 (4)0.0102 (4)
O30.0393 (5)0.0384 (5)0.0451 (6)0.0004 (4)0.0101 (4)0.0006 (4)
C180.0396 (6)0.0387 (7)0.0341 (7)0.0034 (5)0.0056 (5)0.0072 (6)
O20.0517 (6)0.0479 (6)0.0653 (8)0.0055 (5)0.0172 (5)0.0136 (5)
C170.0412 (7)0.0411 (7)0.0386 (7)0.0026 (6)0.0063 (6)0.0112 (6)
C110.0407 (6)0.0300 (6)0.0389 (7)0.0024 (5)0.0092 (5)0.0059 (5)
C120.0454 (7)0.0429 (7)0.0438 (8)0.0112 (6)0.0078 (6)0.0113 (6)
C100.0470 (7)0.0359 (6)0.0493 (8)0.0123 (6)0.0113 (6)0.0110 (6)
C160.0415 (7)0.0416 (7)0.0428 (8)0.0034 (6)0.0089 (6)0.0024 (6)
C40.0470 (7)0.0489 (7)0.0366 (7)0.0114 (6)0.0134 (6)0.0144 (6)
C140.0458 (7)0.0465 (7)0.0407 (8)0.0060 (6)0.0115 (6)0.0082 (6)
C150.0420 (7)0.0462 (7)0.0384 (7)0.0034 (6)0.0086 (6)0.0112 (6)
O10.0542 (6)0.0493 (6)0.0873 (9)0.0122 (5)0.0238 (6)0.0238 (6)
C130.0448 (7)0.0481 (7)0.0426 (8)0.0063 (6)0.0109 (6)0.0118 (6)
C50.0522 (8)0.0555 (8)0.0493 (9)0.0097 (7)0.0199 (7)0.0151 (7)
C90.0492 (8)0.0500 (8)0.0612 (10)0.0158 (7)0.0235 (7)0.0145 (7)
C30.0492 (8)0.0571 (9)0.0440 (9)0.0071 (7)0.0147 (6)0.0104 (7)
C60.0644 (10)0.0632 (9)0.0533 (10)0.0229 (8)0.0298 (8)0.0165 (8)
C80.0696 (10)0.0579 (9)0.0577 (10)0.0154 (8)0.0298 (8)0.0216 (8)
C20.0685 (10)0.0551 (9)0.0474 (9)0.0000 (8)0.0143 (8)0.0086 (8)
C70.0685 (10)0.0530 (8)0.0541 (10)0.0214 (7)0.0191 (8)0.0253 (8)
C10.0802 (11)0.0530 (9)0.0458 (9)0.0170 (8)0.0236 (8)0.0099 (7)
Geometric parameters (Å, º) top
O4—C171.3536 (17)C14—C151.428 (2)
O4—C111.4344 (16)C14—H14A0.9300
O3—C161.3515 (17)C15—H15A0.9300
O3—C111.4437 (16)C13—H13A0.9300
C18—C151.3575 (19)C5—C61.381 (2)
C18—C161.4665 (19)C5—H5A0.9300
C18—C171.4765 (19)C9—C81.522 (2)
O2—C171.2062 (17)C9—H9A0.9700
C11—C101.5080 (18)C9—H9B0.9700
C11—C121.5174 (18)C3—C21.378 (2)
C12—C71.522 (2)C3—H3A0.9300
C12—H12A0.9700C6—C11.369 (2)
C12—H12B0.9700C6—H6A0.9300
C10—C91.524 (2)C8—C71.526 (2)
C10—H10A0.9700C8—H8A0.9700
C10—H10B0.9700C8—H8B0.9700
C16—O11.2045 (17)C2—C11.384 (2)
C4—C31.394 (2)C2—H2A0.9300
C4—C51.395 (2)C7—H7A0.9700
C4—C131.457 (2)C7—H7B0.9700
C14—C131.344 (2)C1—H1A0.9300
C17—O4—C11118.14 (10)C14—C15—H15A115.5
C16—O3—C11119.54 (10)C14—C13—C4127.39 (14)
C15—C18—C16123.28 (12)C14—C13—H13A116.3
C15—C18—C17117.99 (12)C4—C13—H13A116.3
C16—C18—C17118.63 (12)C6—C5—C4121.11 (15)
O2—C17—O4118.86 (12)C6—C5—H5A119.4
O2—C17—C18124.36 (14)C4—C5—H5A119.4
O4—C17—C18116.68 (12)C8—C9—C10111.66 (12)
O4—C11—O3110.01 (11)C8—C9—H9A109.3
O4—C11—C10107.54 (10)C10—C9—H9A109.3
O3—C11—C10106.20 (10)C8—C9—H9B109.3
O4—C11—C12109.82 (10)C10—C9—H9B109.3
O3—C11—C12110.77 (10)H9A—C9—H9B107.9
C10—C11—C12112.40 (12)C2—C3—C4120.55 (15)
C11—C12—C7111.29 (12)C2—C3—H3A119.7
C11—C12—H12A109.4C4—C3—H3A119.7
C7—C12—H12A109.4C1—C6—C5119.95 (15)
C11—C12—H12B109.4C1—C6—H6A120.0
C7—C12—H12B109.4C5—C6—H6A120.0
H12A—C12—H12B108.0C9—C8—C7110.64 (13)
C11—C10—C9111.33 (10)C9—C8—H8A109.5
C11—C10—H10A109.4C7—C8—H8A109.5
C9—C10—H10A109.4C9—C8—H8B109.5
C11—C10—H10B109.4C7—C8—H8B109.5
C9—C10—H10B109.4H8A—C8—H8B108.1
H10A—C10—H10B108.0C3—C2—C1120.34 (16)
O1—C16—O3117.67 (13)C3—C2—H2A119.8
O1—C16—C18125.75 (14)C1—C2—H2A119.8
O3—C16—C18116.55 (12)C12—C7—C8111.50 (12)
C3—C4—C5118.04 (14)C12—C7—H7A109.3
C3—C4—C13122.64 (13)C8—C7—H7A109.3
C5—C4—C13119.32 (14)C12—C7—H7B109.3
C13—C14—C15121.18 (14)C8—C7—H7B109.3
C13—C14—H14A119.4H7A—C7—H7B108.0
C15—C14—H14A119.4C6—C1—C2120.00 (16)
C18—C15—C14128.93 (13)C6—C1—H1A120.0
C18—C15—H15A115.5C2—C1—H1A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.523.440 (2)158
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1177 (14), 9.5506 (19), 11.734 (2)
α, β, γ (°)106.82 (3), 100.14 (3), 93.35 (3)
V3)746.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7448, 3401, 2309
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.130, 1.17
No. of reflections3401
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.523.440 (2)158
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189.  CrossRef CAS Google Scholar
First citationLian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Or. C. 28, 1501–1514.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds