metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2,4-di­chloro-6-[3-(di­methyl­amino)propyl­imino­meth­yl]phenolato}copper(II)

aSchool of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: huangxf007@gmail.com

(Received 18 September 2009; accepted 20 September 2009; online 26 September 2009)

In the title complex, [Cu(C12H15Cl2N2O)2], the CuII ion is coordinated by one N,O-bidentate and one N,N′,O-tridentate Schiff base ligand, resulting in a distorted CuN3O2 square-based pyramidal coordination for the metal ion, with the O atoms lying trans to each other in the basal plane.

Related literature

For background on Schiff bases, see: Shi et al. (2007[Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404-406.], 2008[Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288-296.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H15Cl2N2O)2]

  • Mr = 611.86

  • Triclinic, [P \overline 1]

  • a = 9.4099 (17) Å

  • b = 12.548 (2) Å

  • c = 12.603 (2) Å

  • α = 103.271 (7)°

  • β = 110.907 (7)°

  • γ = 90.614 (8)°

  • V = 1346.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.723, Tmax = 0.836

  • 7433 measured reflections

  • 5221 independent reflections

  • 3718 reflections with I > 2σ(I)

  • Rint = 0.022

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.03

  • 5221 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.921 (2)
Cu1—O1 1.924 (2)
Cu1—N1 2.003 (2)
Cu1—N3 2.009 (2)
Cu1—N2 2.459 (3)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in Schiff base metal complexes due to their molecular architectures and biological activities (Shi et al., 2007; Shi et al., 2008). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The CuII is coordinated by two O and three N atoms from the two Schiff base ligands, forming a distorted square-pyramidal coordination (Table 1).

Related literature top

For background on Schiff bases, see: Shi et al. (2007, 2008). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of 3,5-dichloro-2-hydroxybenzaldehyde (380 mg, 2 mmol), N,N-dimethylpropane-1,3-diamine (204 mg, 2 mmol) and CuCl2.4H2O (1 mmol, 169 mg) was stirred in methanol (10 ml) for 1 h. After keeping the filtrate in air for 8 d, green block-shaped crystals of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
Bis{2,4-dichloro-6-[3-(dimethylamino)propyliminomethyl]phenolato}copper(II) top
Crystal data top
[Cu(C12H15Cl2N2O)2]Z = 2
Mr = 611.86F(000) = 630
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4099 (17) ÅCell parameters from 25 reflections
b = 12.548 (2) Åθ = 9–12°
c = 12.603 (2) ŵ = 1.24 mm1
α = 103.271 (7)°T = 296 K
β = 110.907 (7)°Block, green
γ = 90.614 (8)°0.28 × 0.24 × 0.15 mm
V = 1346.0 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 119
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.723, Tmax = 0.836l = 1515
7433 measured reflections200 standard reflections every 3 reflections
5221 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2468P]
where P = (Fo2 + 2Fc2)/3
5221 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C12H15Cl2N2O)2]γ = 90.614 (8)°
Mr = 611.86V = 1346.0 (4) Å3
Triclinic, P1Z = 2
a = 9.4099 (17) ÅMo Kα radiation
b = 12.548 (2) ŵ = 1.24 mm1
c = 12.603 (2) ÅT = 296 K
α = 103.271 (7)°0.28 × 0.24 × 0.15 mm
β = 110.907 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3718 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.723, Tmax = 0.836200 standard reflections every 3 reflections
7433 measured reflections intensity decay: 1%
5221 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
5221 reflectionsΔρmin = 0.63 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0980 (3)0.3757 (3)0.4415 (3)0.0422 (8)
C20.9891 (3)0.2919 (3)0.4160 (3)0.0413 (7)
H21.00830.24020.46060.050*
C30.8480 (3)0.2824 (2)0.3233 (3)0.0370 (7)
C40.8149 (3)0.3598 (2)0.2532 (3)0.0333 (6)
C50.9332 (3)0.4456 (2)0.2853 (3)0.0368 (7)
C61.0705 (3)0.4550 (3)0.3772 (3)0.0419 (8)
H61.14400.51350.39610.050*
C70.7331 (4)0.1966 (3)0.3072 (3)0.0412 (7)
H70.75690.15580.36320.049*
C80.4966 (4)0.0924 (3)0.2371 (3)0.0522 (9)
H8A0.55320.05190.29300.063*
H8B0.44420.04000.16230.063*
C90.3798 (4)0.1536 (3)0.2794 (3)0.0659 (11)
H9A0.32070.10110.29710.079*
H9B0.43530.20750.35240.079*
C100.2686 (4)0.2124 (3)0.1978 (3)0.0548 (9)
H10A0.21110.15870.12510.066*
H10B0.19660.24200.23320.066*
C110.4186 (5)0.3915 (3)0.2752 (3)0.0642 (11)
H11A0.45380.45240.25360.096*
H11B0.50450.36440.32660.096*
H11C0.34990.41540.31470.096*
C120.2181 (4)0.3478 (3)0.0858 (4)0.0632 (11)
H12A0.14880.37940.12170.095*
H12B0.16340.28980.01770.095*
H12C0.26300.40350.06300.095*
C130.2720 (3)0.0918 (2)0.0966 (3)0.0333 (6)
C140.1557 (3)0.0043 (2)0.1296 (3)0.0383 (7)
C150.0300 (4)0.0163 (3)0.2318 (3)0.0428 (8)
H150.04370.07440.24970.051*
C160.0141 (3)0.0509 (3)0.3084 (3)0.0433 (8)
C170.1206 (3)0.1374 (3)0.2816 (3)0.0404 (7)
H170.10790.18190.33330.048*
C180.2487 (3)0.1596 (2)0.1769 (3)0.0349 (7)
C190.3603 (3)0.2499 (2)0.1558 (3)0.0354 (7)
H190.34480.28420.21650.042*
C200.5819 (3)0.3732 (2)0.0704 (3)0.0369 (7)
H20A0.61330.43270.00040.044*
H20B0.52780.40340.13630.044*
C210.7230 (3)0.3241 (3)0.0862 (3)0.0425 (8)
H21A0.78620.38080.09460.051*
H21B0.78210.30160.01590.051*
C220.6870 (4)0.2265 (3)0.1906 (3)0.0446 (8)
H22A0.78190.20250.19700.054*
H22B0.63440.16640.17820.054*
C230.5059 (5)0.1530 (3)0.3886 (3)0.0611 (10)
H23A0.44400.17300.45880.092*
H23B0.44130.11850.35930.092*
H23C0.57560.10280.40570.092*
C240.6815 (5)0.3107 (3)0.3461 (3)0.0604 (10)
H24A0.75370.26460.36580.091*
H24B0.73530.37630.28770.091*
H24C0.61450.33030.41500.091*
Cl10.90023 (10)0.54424 (7)0.20416 (9)0.0563 (2)
Cl21.27444 (10)0.38562 (9)0.55552 (8)0.0654 (3)
Cl30.17577 (11)0.08122 (7)0.03566 (8)0.0597 (3)
Cl40.14445 (10)0.02090 (9)0.43971 (8)0.0639 (3)
Cu10.52922 (4)0.23541 (3)0.08518 (3)0.03432 (13)
N10.6029 (3)0.1709 (2)0.2244 (2)0.0400 (6)
N20.3386 (3)0.3034 (2)0.1693 (2)0.0460 (7)
N30.4784 (3)0.28772 (18)0.0621 (2)0.0331 (6)
N40.5920 (3)0.2517 (2)0.3004 (2)0.0414 (6)
O10.6871 (2)0.35606 (17)0.16617 (18)0.0401 (5)
O20.3892 (2)0.10554 (16)0.00087 (18)0.0400 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (16)0.054 (2)0.0371 (18)0.0020 (15)0.0087 (13)0.0013 (15)
C20.0361 (18)0.050 (2)0.0334 (17)0.0031 (15)0.0078 (14)0.0107 (15)
C30.0327 (16)0.0389 (17)0.0369 (17)0.0020 (13)0.0119 (14)0.0066 (14)
C40.0299 (16)0.0358 (16)0.0343 (16)0.0006 (13)0.0136 (13)0.0064 (13)
C50.0307 (16)0.0373 (17)0.0426 (18)0.0012 (13)0.0160 (14)0.0064 (14)
C60.0256 (16)0.0432 (18)0.051 (2)0.0064 (14)0.0155 (15)0.0016 (15)
C70.0425 (19)0.0410 (18)0.0408 (18)0.0001 (15)0.0109 (15)0.0191 (15)
C80.051 (2)0.050 (2)0.054 (2)0.0174 (17)0.0076 (17)0.0292 (17)
C90.064 (3)0.083 (3)0.057 (2)0.025 (2)0.025 (2)0.027 (2)
C100.048 (2)0.057 (2)0.068 (2)0.0110 (17)0.0346 (19)0.0102 (19)
C110.070 (3)0.056 (2)0.069 (3)0.011 (2)0.043 (2)0.007 (2)
C120.051 (2)0.065 (3)0.084 (3)0.014 (2)0.034 (2)0.024 (2)
C130.0286 (16)0.0334 (16)0.0360 (17)0.0000 (13)0.0120 (13)0.0053 (13)
C140.0353 (17)0.0332 (16)0.0457 (19)0.0014 (13)0.0150 (15)0.0089 (14)
C150.0328 (17)0.0397 (18)0.052 (2)0.0060 (14)0.0172 (15)0.0025 (15)
C160.0276 (16)0.054 (2)0.0412 (19)0.0013 (15)0.0101 (14)0.0022 (15)
C170.0324 (17)0.0500 (19)0.0388 (18)0.0007 (14)0.0128 (14)0.0121 (15)
C180.0293 (16)0.0393 (17)0.0369 (17)0.0005 (13)0.0132 (13)0.0093 (14)
C190.0325 (16)0.0386 (17)0.0381 (17)0.0011 (13)0.0145 (14)0.0132 (14)
C200.0403 (17)0.0333 (16)0.0357 (17)0.0091 (13)0.0118 (14)0.0103 (13)
C210.0342 (17)0.0462 (19)0.0477 (19)0.0060 (14)0.0139 (15)0.0153 (16)
C220.0420 (19)0.0457 (19)0.053 (2)0.0043 (15)0.0236 (16)0.0166 (16)
C230.069 (3)0.055 (2)0.057 (2)0.0106 (19)0.026 (2)0.0059 (19)
C240.071 (3)0.058 (2)0.063 (2)0.0083 (19)0.035 (2)0.0188 (19)
Cl10.0476 (5)0.0483 (5)0.0710 (6)0.0102 (4)0.0140 (4)0.0243 (4)
Cl20.0340 (5)0.0921 (8)0.0524 (6)0.0029 (5)0.0006 (4)0.0117 (5)
Cl30.0596 (6)0.0484 (5)0.0653 (6)0.0160 (4)0.0104 (5)0.0245 (5)
Cl40.0360 (5)0.0847 (7)0.0519 (6)0.0094 (5)0.0006 (4)0.0083 (5)
Cu10.0302 (2)0.0355 (2)0.0352 (2)0.00629 (15)0.00768 (16)0.01242 (16)
N10.0374 (15)0.0360 (14)0.0452 (16)0.0081 (11)0.0110 (13)0.0148 (12)
N20.0462 (16)0.0438 (16)0.0524 (17)0.0043 (13)0.0258 (14)0.0084 (13)
N30.0291 (13)0.0331 (14)0.0389 (15)0.0021 (11)0.0132 (12)0.0117 (11)
N40.0418 (15)0.0427 (15)0.0434 (16)0.0038 (12)0.0200 (13)0.0111 (12)
O10.0332 (12)0.0422 (12)0.0407 (12)0.0090 (9)0.0055 (10)0.0162 (10)
O20.0380 (12)0.0374 (12)0.0393 (12)0.0055 (9)0.0054 (10)0.0142 (10)
Geometric parameters (Å, º) top
C1—C21.359 (4)C14—C151.370 (4)
C1—C61.393 (4)C14—Cl31.737 (3)
C1—Cl21.745 (3)C15—C161.393 (4)
C2—C31.403 (4)C15—H150.9300
C2—H20.9300C16—C171.365 (4)
C3—C41.423 (4)C16—Cl41.745 (3)
C3—C71.445 (4)C17—C181.401 (4)
C4—O11.298 (3)C17—H170.9300
C4—C51.419 (4)C18—C191.446 (4)
C5—C61.375 (4)C19—N31.284 (4)
C5—Cl11.743 (3)C19—H190.9300
C6—H60.9300C20—N31.488 (3)
C7—N11.272 (4)C20—C211.527 (4)
C7—H70.9300C20—H20A0.9700
C8—N11.470 (3)C20—H20B0.9700
C8—C91.527 (5)C21—C221.510 (4)
C8—H8A0.9700C21—H21A0.9700
C8—H8B0.9700C21—H21B0.9700
C9—C101.514 (5)C22—N41.461 (4)
C9—H9A0.9700C22—H22A0.9700
C9—H9B0.9700C22—H22B0.9700
C10—N21.485 (4)C23—N41.459 (4)
C10—H10A0.9700C23—H23A0.9600
C10—H10B0.9700C23—H23B0.9600
C11—N21.470 (4)C23—H23C0.9600
C11—H11A0.9600C24—N41.456 (4)
C11—H11B0.9600C24—H24A0.9600
C11—H11C0.9600C24—H24B0.9600
C12—N21.462 (4)C24—H24C0.9600
C12—H12A0.9600Cu1—O21.921 (2)
C12—H12B0.9600Cu1—O11.924 (2)
C12—H12C0.9600Cu1—N12.003 (2)
C13—O21.285 (3)Cu1—N32.009 (2)
C13—C141.421 (4)Cu1—N22.459 (3)
C13—C181.427 (4)
C2—C1—C6120.5 (3)C18—C17—H17119.7
C2—C1—Cl2120.5 (3)C17—C18—C13120.9 (3)
C6—C1—Cl2119.0 (2)C17—C18—C19117.9 (3)
C1—C2—C3120.7 (3)C13—C18—C19121.2 (3)
C1—C2—H2119.6N3—C19—C18126.9 (3)
C3—C2—H2119.6N3—C19—H19116.5
C2—C3—C4121.1 (3)C18—C19—H19116.5
C2—C3—C7117.7 (3)N3—C20—C21110.5 (2)
C4—C3—C7121.0 (3)N3—C20—H20A109.5
O1—C4—C5120.5 (3)C21—C20—H20A109.5
O1—C4—C3124.4 (3)N3—C20—H20B109.5
C5—C4—C3115.1 (3)C21—C20—H20B109.5
C6—C5—C4123.4 (3)H20A—C20—H20B108.1
C6—C5—Cl1118.8 (2)C22—C21—C20114.1 (3)
C4—C5—Cl1117.7 (2)C22—C21—H21A108.7
C5—C6—C1119.0 (3)C20—C21—H21A108.7
C5—C6—H6120.5C22—C21—H21B108.7
C1—C6—H6120.5C20—C21—H21B108.7
N1—C7—C3126.8 (3)H21A—C21—H21B107.6
N1—C7—H7116.6N4—C22—C21112.6 (3)
C3—C7—H7116.6N4—C22—H22A109.1
N1—C8—C9110.1 (3)C21—C22—H22A109.1
N1—C8—H8A109.6N4—C22—H22B109.1
C9—C8—H8A109.6C21—C22—H22B109.1
N1—C8—H8B109.6H22A—C22—H22B107.8
C9—C8—H8B109.6N4—C23—H23A109.5
H8A—C8—H8B108.2N4—C23—H23B109.5
C10—C9—C8117.6 (3)H23A—C23—H23B109.5
C10—C9—H9A107.9N4—C23—H23C109.5
C8—C9—H9A107.9H23A—C23—H23C109.5
C10—C9—H9B107.9H23B—C23—H23C109.5
C8—C9—H9B107.9N4—C24—H24A109.5
H9A—C9—H9B107.2N4—C24—H24B109.5
N2—C10—C9115.5 (3)H24A—C24—H24B109.5
N2—C10—H10A108.4N4—C24—H24C109.5
C9—C10—H10A108.4H24A—C24—H24C109.5
N2—C10—H10B108.4H24B—C24—H24C109.5
C9—C10—H10B108.4O2—Cu1—O1173.30 (9)
H10A—C10—H10B107.5O2—Cu1—N189.22 (9)
N2—C11—H11A109.5O1—Cu1—N190.08 (9)
N2—C11—H11B109.5O2—Cu1—N390.21 (9)
H11A—C11—H11B109.5O1—Cu1—N389.49 (9)
N2—C11—H11C109.5N1—Cu1—N3171.46 (10)
H11A—C11—H11C109.5O2—Cu1—N287.36 (9)
H11B—C11—H11C109.5O1—Cu1—N299.17 (9)
N2—C12—H12A109.5N1—Cu1—N282.79 (10)
N2—C12—H12B109.5N3—Cu1—N2105.69 (9)
H12A—C12—H12B109.5C7—N1—C8116.5 (3)
N2—C12—H12C109.5C7—N1—Cu1125.1 (2)
H12A—C12—H12C109.5C8—N1—Cu1118.3 (2)
H12B—C12—H12C109.5C12—N2—C11109.4 (3)
O2—C13—C14120.6 (3)C12—N2—C10108.9 (3)
O2—C13—C18124.1 (3)C11—N2—C10111.1 (3)
C14—C13—C18115.3 (3)C12—N2—Cu1110.2 (2)
C15—C14—C13123.3 (3)C11—N2—Cu1107.1 (2)
C15—C14—Cl3118.8 (2)C10—N2—Cu1110.2 (2)
C13—C14—Cl3117.9 (2)C19—N3—C20114.8 (2)
C14—C15—C16119.1 (3)C19—N3—Cu1124.33 (19)
C14—C15—H15120.4C20—N3—Cu1120.80 (18)
C16—C15—H15120.4C24—N4—C23110.6 (3)
C17—C16—C15120.7 (3)C24—N4—C22111.8 (3)
C17—C16—Cl4121.0 (3)C23—N4—C22111.9 (3)
C15—C16—Cl4118.3 (2)C4—O1—Cu1128.22 (18)
C16—C17—C18120.6 (3)C13—O2—Cu1128.34 (18)
C16—C17—H17119.7

Experimental details

Crystal data
Chemical formula[Cu(C12H15Cl2N2O)2]
Mr611.86
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.4099 (17), 12.548 (2), 12.603 (2)
α, β, γ (°)103.271 (7), 110.907 (7), 90.614 (8)
V3)1346.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.28 × 0.24 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.723, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
7433, 5221, 3718
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.03
No. of reflections5221
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.63

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.921 (2)Cu1—N32.009 (2)
Cu1—O11.924 (2)Cu1—N22.459 (3)
Cu1—N12.003 (2)
 

Acknowledgements

The work was supported by the Doctoral Fund (Project ZMF 08020066) of Jiangsu Polytechnic University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds