organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(1,2,4-triazol-1-ylmeth­yl)biphen­yl

aMechanical and Electrical Engineering Institute, North University of China, Taiyuan, 030051, People's Republic of China
*Correspondence e-mail: xujianjunzb2009@126.com

(Received 23 September 2009; accepted 24 September 2009; online 30 September 2009)

In the title compound, C18H16N6, the complete mol­ecule is generated by crystallographic inversion symmetry. The dihedral angle between the benzene and triazole rings is 84.1 (3)°. The crystal structure is stabilized by weak C—H⋯N hydrogen bonds.

Related literature

For a related structure, see: Wang et al. (2007[Wang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2007). Chem. Commun. pp. 4245-4247.]). For background to the use of flexible ligands to form coordination networks, see: Martin et al. (2007[Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7917-7922.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. (1998). Acc. Chem. Res. 31, 474-484.]); Sun et al. (2006[Sun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411-2421.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N6

  • Mr = 316.37

  • Monoclinic, P 21 /c

  • a = 16.590 (3) Å

  • b = 5.3646 (9) Å

  • c = 8.8009 (14) Å

  • β = 92.567 (3)°

  • V = 782.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.21 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.991

  • 3679 measured reflections

  • 1402 independent reflections

  • 870 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 0.83

  • 1402 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.93 2.56 3.381 (2) 148
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well-known that those ligands containing a flexible backbone provide a bigger number of complexes thanks to their flexibility and conformational freedom that allow for greater structural diversity (Yaghi et al., 1998; Sun et al., 2006; Martin et al., 2007).

4,4'-Bis(1,2,4-triazol-1-ylmethyl)biphenyl (bix) is a excellent building block and has been employed to construct interesting structural polymer with unique properties (Wang et al., 2007).

In an attempt to form a Zn(II) complex with bix, we adventitiously formed the title compound (I) and its crystal structure is determined herein.

The title compound cyrstallizes with one half-molecule in the asymmetric unit. As illustrated in Fig. 1, the bix adopts a anti conformation and has crystallographic 1 symmetry and the dihedral angle between the benzene and triazole rings is 84.1 (3)°.

In the crystal structure, weak intermolecular C—H···N hydrogen bond help to stabilizing the packing.

Related literature top

For a related structure, see: Wang et al. (2007). For background to the use of flexible lignads to form coordination networks, see: Martin et al. (2007); Yaghi et al. (1998); Sun et al. (2006).

Experimental top

Equimolar (28 mg, 0.1 mmol) Zn(OAC)2.6H2O in water (3 ml) and bix (26 mg, 0.1 mmol) in CH3CN and CH3OH solutions (8 ml) were mixed and heated at 428 K for 72 h in a pressurized reactor. Slow evaporation of this solution resulted in the formation of some colourless blocks of (I).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), showing ellipsoids drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius. Symmetry code: (i) –x, 1–y, 1–z.
4,4'-Bis(1,2,4-triazol-1-ylmethyl)biphenyl top
Crystal data top
C18H16N6F(000) = 332
Mr = 316.37Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1402 reflections
a = 16.590 (3) Åθ = 2.5–25.2°
b = 5.3646 (9) ŵ = 0.09 mm1
c = 8.8009 (14) ÅT = 298 K
β = 92.567 (3)°Block, colourless
V = 782.5 (2) Å30.21 × 0.17 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
1402 independent reflections
Radiation source: fine-focus sealed tube870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1918
Tmin = 0.982, Tmax = 0.991k = 65
3679 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.05P)2 + 0.3476P]
where P = (Fo2 + 2Fc2)/3
1402 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C18H16N6V = 782.5 (2) Å3
Mr = 316.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.590 (3) ŵ = 0.09 mm1
b = 5.3646 (9) ÅT = 298 K
c = 8.8009 (14) Å0.21 × 0.17 × 0.11 mm
β = 92.567 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
1402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
870 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.023
3679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.83Δρmax = 0.12 e Å3
1402 reflectionsΔρmin = 0.13 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.34746 (8)0.4361 (3)0.45637 (17)0.0522 (4)
C70.04239 (10)0.4897 (3)0.4755 (2)0.0465 (5)
C40.20243 (10)0.4473 (4)0.3827 (2)0.0511 (5)
C30.28751 (10)0.4191 (4)0.3315 (2)0.0602 (6)
H3A0.29270.25900.28170.072*
H3B0.29790.54790.25760.072*
N20.35680 (10)0.6499 (3)0.5390 (2)0.0651 (5)
C20.41506 (12)0.5892 (5)0.6378 (2)0.0656 (6)
H20.43520.70010.71130.079*
N10.44371 (10)0.3558 (4)0.6256 (2)0.0680 (5)
C60.09257 (11)0.2995 (5)0.5269 (3)0.0714 (7)
H60.07330.18270.59450.086*
C10.39952 (12)0.2674 (4)0.5101 (2)0.0605 (6)
H10.40420.10710.47130.073*
C90.15350 (12)0.6357 (4)0.3306 (3)0.0673 (6)
H90.17320.75270.26380.081*
C80.07478 (12)0.6559 (4)0.3758 (3)0.0682 (6)
H80.04280.78580.33740.082*
C50.17066 (11)0.2789 (5)0.4804 (3)0.0718 (7)
H50.20250.14710.51650.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0403 (8)0.0588 (10)0.0573 (9)0.0008 (8)0.0015 (7)0.0034 (8)
C70.0429 (9)0.0495 (11)0.0467 (10)0.0041 (8)0.0038 (8)0.0044 (9)
C40.0423 (10)0.0637 (13)0.0470 (10)0.0044 (9)0.0030 (8)0.0056 (10)
C30.0468 (11)0.0801 (15)0.0535 (11)0.0024 (10)0.0002 (9)0.0071 (11)
N20.0543 (10)0.0649 (12)0.0754 (12)0.0021 (9)0.0055 (8)0.0133 (10)
C20.0507 (11)0.0816 (17)0.0640 (13)0.0115 (12)0.0022 (10)0.0072 (12)
N10.0562 (10)0.0846 (14)0.0627 (11)0.0017 (10)0.0025 (8)0.0150 (10)
C60.0494 (12)0.0846 (17)0.0804 (15)0.0065 (11)0.0063 (10)0.0323 (13)
C10.0572 (12)0.0605 (13)0.0640 (13)0.0020 (10)0.0057 (10)0.0072 (11)
C90.0586 (12)0.0620 (14)0.0826 (15)0.0013 (11)0.0168 (11)0.0155 (12)
C80.0592 (13)0.0582 (13)0.0880 (16)0.0095 (11)0.0140 (11)0.0177 (12)
C50.0474 (12)0.0834 (17)0.0843 (16)0.0113 (11)0.0012 (10)0.0264 (13)
Geometric parameters (Å, º) top
N3—C11.324 (2)N2—C21.312 (3)
N3—N21.363 (2)C2—N11.345 (3)
N3—C31.451 (2)C2—H20.9300
C7—C81.377 (3)N1—C11.315 (3)
C7—C61.380 (3)C6—C51.380 (3)
C7—C7i1.494 (3)C6—H60.9300
C4—C91.363 (3)C1—H10.9300
C4—C51.369 (3)C9—C81.386 (3)
C4—C31.508 (3)C9—H90.9300
C3—H3A0.9700C8—H80.9300
C3—H3B0.9700C5—H50.9300
C1—N3—N2109.13 (15)N1—C2—H2122.3
C1—N3—C3129.93 (18)C1—N1—C2102.16 (18)
N2—N3—C3120.94 (16)C7—C6—C5121.5 (2)
C8—C7—C6116.16 (17)C7—C6—H6119.3
C8—C7—C7i122.4 (2)C5—C6—H6119.3
C6—C7—C7i121.5 (2)N1—C1—N3111.2 (2)
C9—C4—C5117.42 (18)N1—C1—H1124.4
C9—C4—C3121.69 (19)N3—C1—H1124.4
C5—C4—C3120.87 (19)C4—C9—C8121.1 (2)
N3—C3—C4112.74 (15)C4—C9—H9119.5
N3—C3—H3A109.0C8—C9—H9119.5
C4—C3—H3A109.0C7—C8—C9122.1 (2)
N3—C3—H3B109.0C7—C8—H8118.9
C4—C3—H3B109.0C9—C8—H8118.9
H3A—C3—H3B107.8C4—C5—C6121.7 (2)
C2—N2—N3101.99 (17)C4—C5—H5119.1
N2—C2—N1115.49 (19)C6—C5—H5119.1
N2—C2—H2122.3
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1ii0.932.563.381 (2)148
Symmetry code: (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H16N6
Mr316.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.590 (3), 5.3646 (9), 8.8009 (14)
β (°) 92.567 (3)
V3)782.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3679, 1402, 870
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 0.83
No. of reflections1402
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.932.563.381 (2)148
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMartin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7917–7922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411–2421.  Web of Science CSD CrossRef Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2007). Chem. Commun. pp. 4245–4247.  Web of Science CSD CrossRef Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds