organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Dihydr­­oxy-1,10-phenanthrolin-1-ium chloride dihydrate

aCollege of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
*Correspondence e-mail: wws@hqu.edu.cn

(Received 4 August 2009; accepted 24 August 2009; online 5 September 2009)

The title compound, C12H9N2O2+·Cl·2H2O, exhibits a layered structure which is stabilized by inter­molecular O—H⋯O, O—H⋯Cl and N+—H⋯Cl hydrogen bonds, and ππ inter­actions (centroid–centroid distances = 3.654 and 3.583 Å). The distances between the molecules are 3.371 and 3.294 Å.

Related literature

For a related structure, see: Borel & Bond (2008[Borel, C. & Bond, A. D. (2008). Acta Cryst. E64, o34.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2O2+·Cl·2H2O

  • Mr = 284.69

  • Triclinic, [P \overline 1]

  • a = 7.7627 (1) Å

  • b = 8.6974 (1) Å

  • c = 9.6432 (1) Å

  • α = 86.116 (1)°

  • β = 86.859 (1)°

  • γ = 74.580 (1)°

  • V = 625.73 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.25 × 0.12 × 0.03 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 9780 measured reflections

  • 2872 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.111

  • S = 1.06

  • 2872 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O4 0.82 1.86 2.6782 (18) 179
O2—H02⋯O3 0.82 1.89 2.6669 (18) 157
O3—H03B⋯Cl1 0.81 (3) 2.40 (3) 3.2133 (15) 174 (3)
O3—H03A⋯Cl1i 0.78 (3) 2.45 (3) 3.2323 (15) 176 (3)
O4—H04B⋯Cl1 0.91 (3) 2.33 (3) 3.2185 (14) 165 (3)
O4—H04A⋯Cl1ii 0.94 (3) 2.30 (3) 3.2216 (14) 168 (3)
N2—H9⋯Cl1iii 0.86 2.37 3.1635 (13) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) x, y-1, z+1.

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, [C12H9N2O2]Cl.2H2O, was obtained unintentionally as the product of an attempted synthesis of a condensation product between 1,10-phenanthroline-5,6-dione and picoloylhydrazide. Compared with a similar compound (5,6-dioxo-1,10-phenanthrolin-1-ium chloride) reported (Borel & Bond, 2008), the Cl—H distance is slightly longer (2.372 vs 2.274Å).

The structure of the title compound is shown in Fig. 1. It exhibits a layered structure which is stabilized by inter-molecular O—H···O, O—H···Cl-, N+—H···Cl- hydrogen bonds, detailed in Fig. 2 and Table 1, as well as π-π interactions and C—H···O, C—H···Cl- interactions. With Cl- as the connecting point, it occurs two different shape parallelograms made up of O and Cl-. The dihedral angle between the two planes, which possess different shapes, is 78.67°. The distances between the layers, which belong to offset face to face, are 3.371 Å and 3.294 Å, reflecting π-π interactions.

Related literature top

For a related structure, see: Borel & Bond (2008).

Experimental top

1,10-phenanthroline-5,6-dione (300 mg, 1.53 mmol) was dissolved in a mixed solution of 10 ml CH2Cl2 and 30 ml EtOH when heating with stirring. When all of the compound dissolved, picoloylhydrazide (200 mg, 1.46 mmol) was added and refluxed 8hrs. Then HCl(aq) was added until the pH was 6. Red crystals of the title compound were obtained by slow evaporation of solvent at room temperature. Analysis: Found C 50.45, H 4.82, N 9.71%, calc. for C12H13ClN2O4, C 50.63, H 4.60, N 9.84%.

Refinement top

The positions of the O1- , O2- and N2-bound H atoms were placed at fixed positions and refined accord to the riding model. O3- and O4-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were included in the riding model approximation with C—H = 0.93 Å and Uiso of each H atom = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS (Bruker, 1999); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radius.
[Figure 2] Fig. 2. Crystal Packing diagram of the title compound, showing the H-bonded interactions (dashed lines). Cl11, Cl12, Cl13 represent Cl1i, Cl1ii, Cl1iii, respectively.
5,6-Dihydroxy-1,10-phenanthrolin-1-ium chloride dihydrate top
Crystal data top
C12H9N2O2+·Cl·2H2OZ = 2
Mr = 284.69F(000) = 296
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7627 (1) ÅCell parameters from 2922 reflections
b = 8.6974 (1) Åθ = 2.1–27.7°
c = 9.6432 (1) ŵ = 0.32 mm1
α = 86.116 (1)°T = 296 K
β = 86.859 (1)°Block, red
γ = 74.580 (1)°0.25 × 0.12 × 0.03 mm
V = 625.73 (1) Å3
Data collection top
Bruker P4
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.7°, θmin = 2.1°
Detector resolution: 0 pixels mm-1h = 99
ω scansk = 1111
9780 measured reflectionsl = 1212
2872 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.0835P]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H9N2O2+·Cl·2H2Oγ = 74.580 (1)°
Mr = 284.69V = 625.73 (1) Å3
Triclinic, P1Z = 2
a = 7.7627 (1) ÅMo Kα radiation
b = 8.6974 (1) ŵ = 0.32 mm1
c = 9.6432 (1) ÅT = 296 K
α = 86.116 (1)°0.25 × 0.12 × 0.03 mm
β = 86.859 (1)°
Data collection top
Bruker P4
diffractometer
2336 reflections with I > 2σ(I)
9780 measured reflectionsRint = 0.023
2872 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
2872 reflectionsΔρmin = 0.22 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19595 (6)0.69904 (5)0.01405 (4)0.04841 (15)
O10.30334 (16)0.13935 (13)0.25607 (10)0.0444 (3)
H010.23070.22350.23390.067*
O20.37121 (17)0.34384 (13)0.45497 (11)0.0463 (3)
H020.39720.34840.37150.069*
O30.4713 (2)0.4352 (2)0.20054 (15)0.0614 (4)
H03B0.404 (3)0.497 (3)0.148 (3)0.078 (8)*
H03A0.555 (4)0.400 (3)0.152 (3)0.086 (9)*
O40.06665 (19)0.41360 (17)0.18085 (14)0.0554 (3)
H04B0.089 (4)0.492 (4)0.121 (3)0.105 (9)*
H04A0.024 (4)0.389 (4)0.133 (3)0.101 (9)*
N10.18014 (17)0.20833 (15)0.63900 (12)0.0357 (3)
N20.24864 (16)0.00702 (15)0.82063 (12)0.0351 (3)
H90.21790.09250.84780.042*
C10.1482 (2)0.30386 (18)0.54877 (16)0.0392 (3)
H10.11680.39580.58280.047*
C20.1591 (2)0.27406 (19)0.40435 (16)0.0394 (3)
H20.13570.34540.34510.047*
C30.2039 (2)0.14094 (18)0.35128 (15)0.0358 (3)
H30.21010.11970.25560.043*
C40.28852 (19)0.10836 (17)0.39662 (13)0.0321 (3)
C50.32397 (19)0.20722 (16)0.48912 (14)0.0318 (3)
C60.3461 (2)0.26396 (19)0.73659 (16)0.0389 (3)
H60.37980.35670.70900.047*
C70.3317 (2)0.2208 (2)0.87618 (16)0.0456 (4)
H70.35590.28380.94280.055*
C80.2811 (2)0.0834 (2)0.91623 (15)0.0436 (4)
H80.26960.05411.01020.052*
C90.22636 (18)0.07646 (16)0.58613 (13)0.0298 (3)
C100.24091 (17)0.03478 (16)0.44305 (13)0.0298 (3)
C110.26175 (17)0.02913 (16)0.68159 (13)0.0299 (3)
C120.31023 (18)0.16851 (16)0.63634 (14)0.0309 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (3)0.0498 (3)0.0337 (2)0.0246 (2)0.00378 (17)0.00808 (16)
O10.0661 (8)0.0399 (6)0.0248 (5)0.0116 (5)0.0009 (5)0.0034 (4)
O20.0697 (8)0.0360 (6)0.0367 (6)0.0223 (5)0.0041 (5)0.0027 (5)
O30.0576 (9)0.0664 (9)0.0517 (8)0.0087 (7)0.0078 (7)0.0172 (7)
O40.0623 (8)0.0580 (8)0.0512 (7)0.0280 (6)0.0123 (6)0.0164 (6)
N10.0414 (7)0.0340 (6)0.0329 (6)0.0132 (5)0.0009 (5)0.0003 (5)
N20.0447 (7)0.0361 (7)0.0263 (6)0.0146 (5)0.0005 (5)0.0019 (5)
C10.0455 (9)0.0327 (8)0.0410 (8)0.0138 (6)0.0024 (6)0.0018 (6)
C20.0442 (9)0.0366 (8)0.0392 (8)0.0115 (6)0.0011 (6)0.0112 (6)
C30.0396 (8)0.0382 (8)0.0283 (7)0.0074 (6)0.0011 (5)0.0036 (6)
C40.0369 (7)0.0333 (7)0.0235 (6)0.0061 (5)0.0002 (5)0.0021 (5)
C50.0347 (7)0.0279 (7)0.0318 (7)0.0078 (5)0.0000 (5)0.0037 (5)
C60.0454 (9)0.0364 (8)0.0380 (8)0.0160 (6)0.0007 (6)0.0045 (6)
C70.0586 (10)0.0495 (10)0.0343 (8)0.0218 (8)0.0033 (7)0.0102 (7)
C80.0556 (10)0.0525 (10)0.0251 (7)0.0183 (7)0.0004 (6)0.0029 (6)
C90.0306 (7)0.0306 (7)0.0273 (6)0.0070 (5)0.0004 (5)0.0002 (5)
C100.0297 (7)0.0313 (7)0.0271 (6)0.0056 (5)0.0008 (5)0.0019 (5)
C110.0297 (7)0.0335 (7)0.0256 (6)0.0072 (5)0.0012 (5)0.0003 (5)
C120.0305 (7)0.0323 (7)0.0296 (7)0.0081 (5)0.0005 (5)0.0006 (5)
Geometric parameters (Å, º) top
O1—C41.3685 (16)C2—H20.9300
O1—H010.8200C3—C101.414 (2)
O2—C51.3491 (18)C3—H30.9300
O2—H020.8200C4—C51.367 (2)
O3—H03B0.81 (3)C4—C101.428 (2)
O3—H03A0.78 (3)C5—C121.4415 (18)
O4—H04B0.91 (3)C6—C71.380 (2)
O4—H04A0.94 (3)C6—C121.401 (2)
N1—C11.3192 (19)C6—H60.9300
N1—C91.3504 (18)C7—C81.379 (2)
N2—C81.327 (2)C7—H70.9300
N2—C111.3608 (17)C8—H80.9300
N2—H90.8600C9—C101.4088 (18)
C1—C21.401 (2)C9—C111.4293 (19)
C1—H10.9300C11—C121.3980 (19)
C2—C31.355 (2)
C4—O1—H01109.5C4—C5—C12119.73 (13)
C5—O2—H02109.5C7—C6—C12120.17 (14)
H03B—O3—H03A103 (2)C7—C6—H6119.9
H04B—O4—H04A99 (2)C12—C6—H6119.9
C1—N1—C9116.77 (12)C8—C7—C6119.53 (14)
C8—N2—C11123.10 (13)C8—C7—H7120.2
C8—N2—H9118.4C6—C7—H7120.2
C11—N2—H9118.4N2—C8—C7119.93 (14)
N1—C1—C2123.39 (14)N2—C8—H8120.0
N1—C1—H1118.3C7—C8—H8120.0
C2—C1—H1118.3N1—C9—C10124.54 (12)
C3—C2—C1119.85 (14)N1—C9—C11117.94 (12)
C3—C2—H2120.1C10—C9—C11117.52 (12)
C1—C2—H2120.1C9—C10—C3116.20 (13)
C2—C3—C10119.24 (13)C9—C10—C4120.66 (12)
C2—C3—H3120.4C3—C10—C4123.13 (12)
C10—C3—H3120.4N2—C11—C12118.90 (12)
C5—C4—O1121.50 (13)N2—C11—C9119.19 (12)
C5—C4—C10121.14 (12)C12—C11—C9121.91 (12)
O1—C4—C10117.32 (12)C11—C12—C6118.36 (13)
O2—C5—C4125.29 (12)C11—C12—C5119.02 (12)
O2—C5—C12114.97 (12)C6—C12—C5122.62 (13)
C9—N1—C1—C20.4 (2)O1—C4—C10—C9178.79 (12)
N1—C1—C2—C30.2 (2)C5—C4—C10—C3179.72 (13)
C1—C2—C3—C100.7 (2)O1—C4—C10—C32.0 (2)
O1—C4—C5—O21.8 (2)C8—N2—C11—C120.5 (2)
C10—C4—C5—O2179.45 (13)C8—N2—C11—C9179.24 (13)
O1—C4—C5—C12178.75 (12)N1—C9—C11—N20.33 (19)
C10—C4—C5—C121.1 (2)C10—C9—C11—N2179.86 (12)
C12—C6—C7—C80.3 (3)N1—C9—C11—C12179.92 (12)
C11—N2—C8—C70.4 (2)C10—C9—C11—C120.4 (2)
C6—C7—C8—N20.8 (3)N2—C11—C12—C61.0 (2)
C1—N1—C9—C100.5 (2)C9—C11—C12—C6178.75 (13)
C1—N1—C9—C11179.99 (13)N2—C11—C12—C5179.91 (12)
N1—C9—C10—C30.1 (2)C9—C11—C12—C50.3 (2)
C11—C9—C10—C3179.56 (12)C7—C6—C12—C110.6 (2)
N1—C9—C10—C4179.20 (12)C7—C6—C12—C5179.68 (14)
C11—C9—C10—C40.29 (19)O2—C5—C12—C11179.92 (12)
C2—C3—C10—C90.5 (2)C4—C5—C12—C110.4 (2)
C2—C3—C10—C4179.81 (14)O2—C5—C12—C61.0 (2)
C5—C4—C10—C91.1 (2)C4—C5—C12—C6179.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O40.821.862.6782 (18)179
O2—H02···O30.821.892.6669 (18)157
O3—H03B···Cl10.81 (3)2.40 (3)3.2133 (15)174 (3)
O3—H03A···Cl1i0.78 (3)2.45 (3)3.2323 (15)176 (3)
O4—H04B···Cl10.91 (3)2.33 (3)3.2185 (14)165 (3)
O4—H04A···Cl1ii0.94 (3)2.30 (3)3.2216 (14)168 (3)
N2—H9···Cl1iii0.862.373.1635 (13)153
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC12H9N2O2+·Cl·2H2O
Mr284.69
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7627 (1), 8.6974 (1), 9.6432 (1)
α, β, γ (°)86.116 (1), 86.859 (1), 74.580 (1)
V3)625.73 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.12 × 0.03
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9780, 2872, 2336
Rint0.023
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.111, 1.06
No. of reflections2872
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: XSCANS (Bruker, 1999), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O40.8201.8612.6782 (18)179.22
O2—H02···O30.8201.8912.6669 (18)157.35
O3—H03B···Cl10.81 (3)2.40 (3)3.2133 (15)174 (3)
O3—H03A···Cl1i0.78 (3)2.45 (3)3.2323 (15)176 (3)
O4—H04B···Cl10.91 (3)2.33 (3)3.2185 (14)165 (3)
O4—H04A···Cl1ii0.94 (3)2.30 (3)3.2216 (14)168 (3)
N2—H9···Cl1iii0.8602.3723.1635 (13)153.22
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1, z+1.
 

Acknowledgements

We are grateful for financial support from the National Science Foundation of Fujian Province of China (No. E0610017, 2003 F006).

References

First citationBorel, C. & Bond, A. D. (2008). Acta Cryst. E64, o34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds