organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5-Tri-4-pyridyl-1H-imidazole monohydrate

aCollege of Mechanical and Materials Engineering, Jiujiang University, 332005 Jiujiang, JiangXi, People's Republic of China
*Correspondence e-mail: qhuang111@163.com

(Received 12 August 2009; accepted 14 August 2009; online 5 September 2009)

The title compound, C18H13N5·H2O, was synthesized by the condensation of pyridine-4-carbaldehyde and ammonium acetate, forming a multipyridyl ligand. In the crystal, mol­ecules are linked into chains by O—H⋯N hydrogen bonds. The chains are linked by weak C—H⋯N inter­actions, generating a layer structure.

Related literature

2,4,5-Tri-4-pyrid­yl-imidazole is used in the construction of metal-organic coordination polymers, see: Liang et al. (2009[Liang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des. 9, 1041-1053.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N5·H2O

  • Mr = 317.35

  • Triclinic, [P \overline 1]

  • a = 8.910 (2) Å

  • b = 9.401 (2) Å

  • c = 10.638 (2) Å

  • α = 72.027 (4)°

  • β = 70.624 (4)°

  • γ = 77.716 (4)°

  • V = 793.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.981

  • 4313 measured reflections

  • 3067 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.059

  • S = 1.02

  • 3067 reflections

  • 217 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Selected torsion angles (°)

C4—C3—C6—N2 −12.2 (4)
C14—C7—C8—C9 1.8 (5)
N1—C8—C9—C13 −88.5 (3)
N2—C7—C14—C18 −7.7 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.94 1.82 2.756 (2) 173
C10—H10⋯N2i 0.93 2.59 3.467 (3) 158
O1—H1B⋯N4ii 0.91 1.96 2.869 (2) 174
O1—H1A⋯N5iii 0.87 1.94 2.808 (2) 174
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y+1, z; (iii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

2,4,5-tri(4-pyridyl)imidazole is a multipyridyl compound, which is useful to construct new metal-organic coordination polymers (Liang et al., 2009). In this paper, we report the synthesis and X-ray crystal structure analysis of the title compound, (I,) 2,4,5-tri(4-pyridyl)imidazole with one co-crystallized water molecule.

In 2,4,5-tri(4-pyridyl)imidazole three pyridyl groups are directly connected with the imidazole ring. The dihedral angles between the mean planes of pyridyl ring A and imidazole ring D is 11.6 (4)°, that of pyridyl ring B and imidazole ring D is 8.4 (3)°, and that of pyridyl ring C and imidazole ring D is 84.1 (3)°, suggesting that the plane of ring A and B are co-planar with ring D, but that ring C and ring D are almost vertical.

In the crystal lattice the molecules are linked by O—H···N hydrogen bonds, and by weak C—H···N interactions to generate a three-dimensional layer structure (Fig 2).

Related literature top

2,4,5-Tri(4-pyridyl)imidazole is used in the construction of metal-organic coordination polymers, see: Liang et al. (2009).

Experimental top

A mixture of 2 g (0.018 mol) of 4-pyridinecarbaldehyde and 8 g (0.1 mol) of ammonium acetate was heated to 393 K with stirring 3 h. The reaction mixture was cooled, the precipitate was filtered off, washed with water, 5% solution of NaOH, and recrystallized from ethanol. Single crystals of 2,4,5-tri(4-pyridyl)imidazole suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. 1H NMR (500 MHz, DMSO-d6) 8.70(t, 4H), 8.54 (s, 2H), 8.02 (s, 2H), 7.53 (s, 4H) MS: found [M+] = 299.1, cal [M+] = 299.3.

Refinement top

The H atoms of the pyridyl rings were constrainted as idealized aromatic CH groups. The H atoms of water, H1A and H1B, were located in a difference Fourier map and the O1—H1A and O1—H1B were restrained to 0.85Å, the H1A—H1Bwas restrained to 1.35Å. The proton on the imidazole N atom, H1C,was also located in a difference Fourier map and N1—H1C was restrained to 0.94Å. The Uiso(H) was equal to 1.2 times that of the parent atoms for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the c axis; hydrogen bonds are shown as dashed lines.
2,4,5-Tri-4-pyridyl-1H-imidazole monohydrate top
Crystal data top
C18H13N5·H2OZ = 2
Mr = 317.35F(000) = 332
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.910 (2) ÅCell parameters from 4826 reflections
b = 9.401 (2) Åθ = 0.9–28.3°
c = 10.638 (2) ŵ = 0.09 mm1
α = 72.027 (4)°T = 293 K
β = 70.624 (4)°Block, yellow
γ = 77.716 (4)°0.30 × 0.26 × 0.22 mm
V = 793.4 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3067 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.974, Tmax = 0.981k = 118
4313 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0004P)2]
where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H13N5·H2Oγ = 77.716 (4)°
Mr = 317.35V = 793.4 (3) Å3
Triclinic, P1Z = 2
a = 8.910 (2) ÅMo Kα radiation
b = 9.401 (2) ŵ = 0.09 mm1
c = 10.638 (2) ÅT = 293 K
α = 72.027 (4)°0.30 × 0.26 × 0.22 mm
β = 70.624 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
3067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1720 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.025
4313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
3067 reflectionsΔρmin = 0.15 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3675 (3)0.6040 (2)0.2766 (3)0.0664 (8)
H10.27020.66210.27110.080*
C20.3638 (3)0.4768 (2)0.3848 (2)0.0539 (7)
H20.26690.45150.44920.065*
C30.5060 (3)0.3871 (2)0.3965 (2)0.0403 (6)
C40.6444 (3)0.4344 (2)0.2983 (2)0.0505 (7)
H40.74360.37980.30230.061*
C50.6343 (3)0.5632 (3)0.1943 (2)0.0616 (8)
H50.72950.59200.12910.074*
C60.5121 (2)0.2487 (2)0.5058 (2)0.0391 (6)
C70.5929 (2)0.0342 (2)0.6266 (2)0.0394 (6)
C80.4352 (2)0.0717 (2)0.6957 (2)0.0409 (6)
C90.3254 (2)0.0054 (2)0.8263 (2)0.0411 (6)
C100.2358 (3)0.1086 (2)0.8270 (3)0.0599 (8)
H100.24080.12880.74530.072*
C110.1383 (3)0.1815 (3)0.9518 (3)0.0648 (8)
H110.07980.25220.95130.078*
C120.2082 (3)0.0560 (3)1.0683 (3)0.0626 (8)
H120.19950.03631.15110.075*
C130.3095 (2)0.0224 (2)0.9487 (2)0.0530 (7)
H130.36590.09320.95190.064*
C140.7046 (2)0.1000 (2)0.6596 (2)0.0408 (6)
C150.6737 (2)0.2114 (2)0.7826 (2)0.0518 (7)
H150.57770.20240.85120.062*
C160.7863 (3)0.3359 (2)0.8028 (3)0.0609 (8)
H160.76200.40900.88620.073*
C170.9555 (3)0.2501 (3)0.5936 (3)0.0675 (9)
H171.05320.26140.52740.081*
C180.8497 (2)0.1228 (2)0.5640 (2)0.0558 (8)
H180.87650.05230.47920.067*
N10.38651 (19)0.20619 (17)0.61671 (17)0.0441 (5)
H1C0.28490.25950.64540.053*
N20.63900 (18)0.14695 (18)0.50748 (17)0.0417 (5)
N30.4987 (3)0.6500 (2)0.1798 (2)0.0669 (7)
N40.9263 (2)0.3581 (2)0.7116 (2)0.0642 (7)
N50.1230 (2)0.1573 (2)1.0716 (2)0.0578 (6)
O10.07758 (16)0.34217 (15)0.70240 (16)0.0723 (6)
H1A0.01120.29120.77400.087*
H1B0.02960.43570.71190.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0606 (18)0.0525 (17)0.075 (2)0.0030 (13)0.0288 (16)0.0057 (15)
C20.0493 (16)0.0470 (16)0.0557 (18)0.0069 (12)0.0138 (13)0.0002 (13)
C30.0441 (14)0.0339 (13)0.0413 (15)0.0052 (11)0.0110 (12)0.0087 (11)
C40.0506 (15)0.0445 (15)0.0472 (16)0.0069 (12)0.0090 (13)0.0039 (13)
C50.0673 (19)0.0564 (17)0.0499 (18)0.0210 (14)0.0076 (15)0.0009 (14)
C60.0371 (14)0.0352 (13)0.0391 (15)0.0044 (11)0.0068 (12)0.0059 (11)
C70.0389 (14)0.0316 (13)0.0431 (15)0.0020 (10)0.0094 (11)0.0072 (12)
C80.0427 (14)0.0306 (13)0.0403 (15)0.0023 (11)0.0074 (12)0.0029 (11)
C90.0379 (14)0.0310 (14)0.0423 (16)0.0039 (10)0.0062 (12)0.0035 (12)
C100.0671 (18)0.0481 (16)0.0545 (18)0.0157 (13)0.0014 (14)0.0138 (14)
C110.0677 (19)0.0475 (17)0.069 (2)0.0186 (13)0.0037 (17)0.0105 (16)
C120.0691 (19)0.0614 (18)0.0475 (18)0.0080 (14)0.0121 (15)0.0054 (15)
C130.0559 (17)0.0472 (16)0.0466 (17)0.0126 (12)0.0087 (13)0.0017 (13)
C140.0371 (13)0.0352 (13)0.0478 (16)0.0029 (10)0.0111 (12)0.0097 (12)
C150.0468 (15)0.0437 (15)0.0510 (17)0.0046 (12)0.0081 (13)0.0060 (13)
C160.0644 (18)0.0460 (16)0.0592 (19)0.0018 (14)0.0175 (15)0.0014 (13)
C170.0456 (16)0.0552 (18)0.077 (2)0.0033 (13)0.0018 (15)0.0065 (16)
C180.0424 (14)0.0429 (15)0.0631 (18)0.0009 (12)0.0061 (13)0.0009 (13)
N10.0363 (11)0.0334 (11)0.0475 (13)0.0033 (8)0.0024 (10)0.0050 (10)
N20.0382 (11)0.0356 (11)0.0430 (12)0.0028 (9)0.0068 (9)0.0048 (9)
N30.0751 (16)0.0556 (14)0.0610 (16)0.0149 (13)0.0254 (13)0.0083 (12)
N40.0509 (14)0.0481 (13)0.0766 (17)0.0070 (10)0.0139 (12)0.0061 (12)
N50.0524 (14)0.0451 (14)0.0571 (16)0.0041 (10)0.0046 (12)0.0001 (12)
O10.0484 (10)0.0450 (10)0.0835 (13)0.0044 (7)0.0126 (9)0.0020 (9)
Geometric parameters (Å, º) top
C1—N31.325 (2)C10—H100.9300
C1—C21.377 (3)C11—N51.321 (3)
C1—H10.9300C11—H110.9300
C2—C31.385 (3)C12—N51.324 (3)
C2—H20.9300C12—C131.385 (3)
C3—C41.379 (2)C12—H120.9300
C3—C61.458 (3)C13—H130.9300
C4—C51.374 (3)C14—C181.377 (2)
C4—H40.9300C14—C151.386 (3)
C5—N31.333 (3)C15—C161.382 (3)
C5—H50.9300C15—H150.9300
C6—N21.318 (2)C16—N41.324 (2)
C6—N11.352 (2)C16—H160.9300
C7—C81.379 (2)C17—N41.335 (3)
C7—N21.381 (2)C17—C181.380 (3)
C7—C141.460 (3)C17—H170.9300
C8—N11.359 (2)C18—H180.9300
C8—C91.480 (3)N1—H1C0.9393
C9—C131.362 (3)O1—H1A0.8697
C9—C101.378 (3)O1—H1B0.9124
C10—C111.383 (3)
N3—C1—C2125.1 (2)N5—C11—H11117.9
N3—C1—H1117.4C10—C11—H11117.9
C2—C1—H1117.4N5—C12—C13123.8 (3)
C1—C2—C3119.2 (2)N5—C12—H12118.1
C1—C2—H2120.4C13—C12—H12118.1
C3—C2—H2120.4C9—C13—C12119.2 (2)
C4—C3—C2116.7 (2)C9—C13—H13120.4
C4—C3—C6120.74 (19)C12—C13—H13120.4
C2—C3—C6122.61 (19)C18—C14—C15116.15 (19)
C5—C4—C3119.3 (2)C18—C14—C7119.69 (19)
C5—C4—H4120.3C15—C14—C7124.15 (19)
C3—C4—H4120.3C16—C15—C14119.7 (2)
N3—C5—C4125.0 (2)C16—C15—H15120.1
N3—C5—H5117.5C14—C15—H15120.1
C4—C5—H5117.5N4—C16—C15124.4 (2)
N2—C6—N1111.24 (18)N4—C16—H16117.8
N2—C6—C3124.49 (18)C15—C16—H16117.8
N1—C6—C3124.24 (18)N4—C17—C18124.0 (2)
C8—C7—N2109.24 (17)N4—C17—H17118.0
C8—C7—C14130.29 (19)C18—C17—H17118.0
N2—C7—C14120.44 (17)C14—C18—C17120.1 (2)
N1—C8—C7105.72 (17)C14—C18—H18119.9
N1—C8—C9121.56 (17)C17—C18—H18119.9
C7—C8—C9132.71 (19)C6—N1—C8108.05 (16)
C13—C9—C10118.0 (2)C6—N1—H1C129.5
C13—C9—C8121.6 (2)C8—N1—H1C122.1
C10—C9—C8120.4 (2)C6—N2—C7105.72 (16)
C9—C10—C11118.5 (2)C1—N3—C5114.6 (2)
C9—C10—H10120.7C16—N4—C17115.58 (19)
C11—C10—H10120.7C11—N5—C12116.2 (2)
N5—C11—C10124.3 (3)H1A—O1—H1B96.8
N3—C1—C2—C30.1 (4)C8—C7—C14—C18170.3 (3)
C1—C2—C3—C41.3 (4)N2—C7—C14—C187.7 (3)
C1—C2—C3—C6178.4 (2)C8—C7—C14—C158.4 (4)
C2—C3—C4—C51.5 (3)N2—C7—C14—C15173.6 (2)
C6—C3—C4—C5178.2 (2)C18—C14—C15—C160.0 (4)
C3—C4—C5—N30.5 (4)C7—C14—C15—C16178.7 (2)
C4—C3—C6—N212.2 (4)C14—C15—C16—N40.3 (4)
C2—C3—C6—N2167.5 (2)C15—C14—C18—C170.6 (4)
C4—C3—C6—N1169.8 (2)C7—C14—C18—C17179.4 (2)
C2—C3—C6—N110.4 (4)N4—C17—C18—C140.9 (4)
N2—C7—C8—N10.8 (3)N2—C6—N1—C81.3 (3)
C14—C7—C8—N1177.4 (2)C3—C6—N1—C8179.5 (2)
N2—C7—C8—C9180.0 (2)C7—C8—N1—C61.3 (3)
C14—C7—C8—C91.8 (5)C9—C8—N1—C6179.5 (2)
N1—C8—C9—C1388.5 (3)N1—C6—N2—C70.8 (3)
C7—C8—C9—C1392.5 (3)C3—C6—N2—C7179.0 (2)
N1—C8—C9—C1091.7 (3)C8—C7—N2—C60.0 (3)
C7—C8—C9—C1087.4 (4)C14—C7—N2—C6178.4 (2)
C13—C9—C10—C111.8 (3)C2—C1—N3—C50.9 (4)
C8—C9—C10—C11178.05 (19)C4—C5—N3—C10.7 (4)
C9—C10—C11—N51.1 (4)C15—C16—N4—C170.0 (4)
C10—C9—C13—C121.6 (3)C18—C17—N4—C160.6 (4)
C8—C9—C13—C12178.25 (19)C10—C11—N5—C120.0 (4)
N5—C12—C13—C90.6 (4)C13—C12—N5—C110.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.941.822.756 (2)173
C10—H10···N2i0.932.593.467 (3)158
O1—H1B···N4ii0.911.962.869 (2)174
O1—H1A···N5iii0.871.942.808 (2)174
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H13N5·H2O
Mr317.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.910 (2), 9.401 (2), 10.638 (2)
α, β, γ (°)72.027 (4), 70.624 (4), 77.716 (4)
V3)793.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4313, 3067, 1720
Rint0.025
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.059, 1.02
No. of reflections3067
No. of parameters217
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: , SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Selected torsion angles (º) top
C4—C3—C6—N212.2 (4)N1—C8—C9—C1388.5 (3)
C14—C7—C8—C91.8 (5)N2—C7—C14—C187.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.941.822.756 (2)172.8
C10—H10···N2i0.932.593.467 (3)157.6
O1—H1B···N4ii0.911.962.869 (2)173.8
O1—H1A···N5iii0.871.942.808 (2)173.6
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x, y, z+2.
 

Acknowledgements

The author gratefully acknowledges financial support from the Educational Commission of Jiangxi Province of China (GJJ08448) and the Natural Science Foundation of Jiangxi Province of China (2008GQC0002).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des. 9, 1041–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds