organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2439-o2440

3-(2-Amino-1-methyl-4-oxo-4,5-di­hydro-1H-imidazol-5-yl)-3-hydr­­oxy-1-phenyl­indolin-2-one ethanol solvate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 18 August 2009; accepted 24 August 2009; online 12 September 2009)

In the title compound, C18H16N4O3·C2H5OH, mol­ecules are linked into chains by a series of inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds which stabilize the crystal structure. The indole and creatinine units make a dihedral angle of 56.45 (4)°. The title compound has two chiral centres. The crystal structure indicates the compound is racemic (RR and SS).

Related literature

For the biological activity of isatin and its derivatives, see: Pandeya et al. (2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]). The endogenous oxindoles 5-hydroxy­oxindole and isatin are anti­proliferative and proapoptotic, see: Cane et al. (2000[Cane, A., Tournaire, M. C., Barritault, D. & Crumeyrolle-Arias, M. (2000). Biochem. Biophys. Res. Commun. 276, 379-384.]). For in vitro cytotoxicity evaluation of some substituted isatin derivatives, see: Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931-938.]). 2-Indol-3-yl-methyl­enequinuclidin-3-ols and NADPH oxidase activity has been reported by Sekhar et al. (2003[Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636-5645.]), and novel substituted (Z)-2-(N-benzyl­indol-3-ylmethyl­ene)quinuclidin-3-one and (Z)-(±)-2-(N-benzyl­indol-3-yl methyl­ene)quinuclidin-3-ol derivatives as potent thermal sensitizing agents by Sonar et al. (2007[Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821-6824.]). For the crystal and mol­ecular structure of isatin, see: Frolova et al. (1988[Frolova, N. A., Kravtsov, V. K., Biyushkin, V. N., Chumakov, Yu. M., Bel'kova, O. N. & Malinovskii, T. I. (1988). J. Struct. Chem. 29, 491-493.]). For the structure of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-3-hydroxy­indolin-2-one monohydrate, see: Penthala et al. (2009[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o552.]) and of 1,1′-diacetyl-3-hydr­oxy-2,2′,3,3′-tetra­hydro-3,3′-bi(1H-indole)-2,2′-dione, see: Usman et al. (2002[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002). Acta Cryst. C58, o24-o25.]). The aldol condensation enolate mechanism via a six-membered transition state has been described by Zimmerman & Traxler (1957[Zimmerman, H. E. & Traxler, M. D. (1957). J. Am. Chem. Soc. 79, 1920-1923.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O3·C2H6O

  • Mr = 382.42

  • Triclinic, [P \overline 1]

  • a = 7.4912 (1) Å

  • b = 11.0018 (2) Å

  • c = 12.0835 (2) Å

  • α = 78.152 (1)°

  • β = 74.413 (1)°

  • γ = 74.090 (1)°

  • V = 913.15 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 90 K

  • 0.11 × 0.11 × 0.08 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.938

  • 13576 measured reflections

  • 3294 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.07

  • 3294 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1S 0.84 2.19 2.9579 (14) 152
O2—H2⋯O3i 0.84 2.58 3.2440 (12) 137
N3—H3A⋯O1ii 0.88 2.02 2.8898 (13) 169
N3—H3B⋯N2iii 0.88 2.06 2.9391 (15) 174
O1S—H1S⋯O3i 0.84 1.89 2.7048 (13) 162
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

1H-Indole-2,3-diones (isatins) are versatile molecules that display diverse biological activities, (Pandeya et al., 2005), including anticancer activity. (Cane et al., 2000 and Vine et al., 2007). Based on the results of earlier work on radiosensitizers such as (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one and (Z)-(±)-2-(N-benzylindol-3-ylmethylene) quinuclidin-3-ol derivatives (Sekhar et al., 2003; Sonar et al., 2007), we have carried out the design, synthesis and structural analysis of a series of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-3- hydroxyindolin-2-one analogs with different substituents on the indole moiety. This X-ray analysis of the title compound was performed to confirm the stereochemistry of the molecule and to obtain detailed information on the conformation of the molecule, which may be useful in structure-activity relationship (SAR) analysis. The title compound was prepared by the aldol condensation of N-phenylindol-2,3-dione (N -phenyl isatin) with 2-amino- 1-methyl-1H-imidazol-4(5H)-one (creatinine) in the presence of sodium acetate in acetic acid under microwave irradiation. The compound was crystallized from ethyl alcohol. This aldol condensation reaction proceeds by the formation of the E-enolate, as per the Zimmerman-Traxler model (Zimmerman & Traxler, 1957), which favores anti products, and leads to the formation of a racemic compound (equimolar RR and SS enantiomers). The molecular structure and the atom-numbering scheme are shown in Fig.1. The isatin ring is planar (r.m.s. deviation = 0.00342 (10) Å) with bond distances and angles comparable with those previously reported for other isatin derivatives (Frolova et al., 1988; Usman, et al., 2002 and Penthala et al. 2009). The indole and creatinine moieties make a dihedral angle of 56.45 (4)°. Intermolecular N—H···O and O—H···N hydrogen bonds stabilize the crystal structure and form a supramolecular aggregation.

Related literature top

For the biological activity of isatin and its derivatives, see: Pandeya et al. (2005). The endogenous oxindoles 5-hydroxyoxindole and isatin are antiproliferative and proapoptotic, see: Cane et al. (2000). For in vitro cytotoxicity evaluation of some substituted isatin derivatives, see: Vine et al. (2007). 2-Indol-3-yl-methylenequinuclidin-3-ols and NADPH oxidase activity has been reported by Sekhar et al. (2003), and novel substituted (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one and (Z)-(±)-2-(N-benzylindol-3-yl methylene)quinuclidin-3-ol derivatives as potent thermal sensitizing agents by Sonar et al. (2007). For the crystal and molecular structure of isatin, see: Frolova et al. (1988). For the structure of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)- 3-hydroxyindolin-2-one monohydrate, see: Penthala et al. (2009) and for 1,1'-diacetyl-3-hydroxy- 2,2',3,3'-tetrahydro-3,3'-bi(1H-indole)-2,2'-dione, see: Usman et al. (2002). The aldol condensation enolate mechanism via a six-membered transition state has been described by Zimmerman & Traxler (1957).

Experimental top

A mixture of N-phenyl isatin (1 mmol), creatinine (1.1 mmol) and sodium acetate (1.2 mmol) in acetic acid (1 ml) was irradiated in a domestic microwave oven for 30 sec with intermittent cooling every 5 sec. The reaction mixture was allowed to cool to room temperature, 10 ml of saturated sodium bicarbonate solution was added and the mixture was stirred for 10 minutes. The precipitate thus obtained was collected by filtration, washed with cold water and dried to afford the crude product. Crystallization from ethyl alcohol gave a white crystalline product of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H- imidazol-5-yl)-3-hydroxy-1-phenylindolin-2-one ethanolate which was suitable for X-ray analysis. 1H NMR (DMSO-d6): δ 3.25 (s, 3H), 4.22 (s, 1H), 6.62 (s, 1H, OH), 6.64–6.65 (d, J=2.4 Hz, 1H), 7.00–7.03 (t, J=7.5 Hz, 1H), 7.17–7.23 (m, 2H), 7.44–7.47 (m, 4H), 7.55–7.57 (d, J=7.5 Hz, 1H), 7.60 (bs, 2H, NH2) p.p.m.; 13C NMR (DMSO-d6): δ 33.02, 70.60, 76.26, 108.92, 122.74, 124.38, 126.95, 127.10, 128.13, 129.60, 129.86, 134.40, 143.93, 171.90, 174.09, 182.53 p.p.m..

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), 0.84 Å (O—H), 0.88 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-(2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-3-hydroxy-1- phenylindolin-2-one ethanol solvate top
Crystal data top
C18H16N4O3·C2H6OZ = 2
Mr = 382.42F(000) = 404
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.4912 (1) ÅCell parameters from 9955 reflections
b = 11.0018 (2) Åθ = 3.8–68.3°
c = 12.0835 (2) ŵ = 0.82 mm1
α = 78.152 (1)°T = 90 K
β = 74.413 (1)°Block, colourless
γ = 74.090 (1)°0.11 × 0.11 × 0.08 mm
V = 913.15 (3) Å3
Data collection top
Bruker X8 Proteum
diffractometer
3294 independent reflections
Radiation source: fine-focus rotating anode3126 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.035
Detector resolution: 5.6 pixels mm-1θmax = 68.3°, θmin = 3.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
k = 1310
Tmin = 0.828, Tmax = 0.938l = 1414
13576 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ^2^(Fo^2^) + (0.0501P)^2^ + 0.3708P]
whereP = (Fo^2^ + 2Fc^2^)/3
S = 1.07(Δ/σ)max < 0.001
3294 reflectionsΔρmax = 0.37 e Å3
258 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (7)
Crystal data top
C18H16N4O3·C2H6Oγ = 74.090 (1)°
Mr = 382.42V = 913.15 (3) Å3
Triclinic, P1Z = 2
a = 7.4912 (1) ÅCu Kα radiation
b = 11.0018 (2) ŵ = 0.82 mm1
c = 12.0835 (2) ÅT = 90 K
α = 78.152 (1)°0.11 × 0.11 × 0.08 mm
β = 74.413 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
3294 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
3126 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.938Rint = 0.035
13576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3294 reflectionsΔρmin = 0.41 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37921 (12)0.08545 (8)0.23487 (7)0.0188 (2)
N10.16513 (14)0.24923 (9)0.32617 (8)0.0159 (2)
C10.29249 (17)0.19721 (11)0.23418 (10)0.0161 (3)
O20.50070 (12)0.30752 (8)0.07786 (7)0.0202 (2)
H20.55290.31580.12840.030*
N20.03753 (14)0.13607 (10)0.04645 (8)0.0174 (2)
C20.30826 (17)0.30455 (11)0.12863 (10)0.0173 (3)
O30.10708 (12)0.31235 (9)0.14096 (8)0.0232 (2)
N30.26263 (14)0.00056 (10)0.07643 (9)0.0185 (2)
H3A0.37800.02010.12020.022*
H3B0.17980.04540.06970.022*
C30.18841 (17)0.42116 (12)0.18239 (10)0.0178 (3)
N40.33379 (14)0.17486 (10)0.02748 (8)0.0175 (2)
C40.15762 (18)0.54854 (12)0.13580 (11)0.0210 (3)
H40.21480.57460.05730.025*
C50.04026 (19)0.63828 (12)0.20688 (11)0.0222 (3)
H50.01800.72660.17680.027*
C60.04402 (18)0.59920 (12)0.32105 (11)0.0212 (3)
H60.12390.66150.36800.025*
C70.01412 (17)0.47040 (12)0.36854 (10)0.0183 (3)
H70.07280.44370.44650.022*
C80.10411 (17)0.38371 (11)0.29745 (10)0.0168 (3)
C90.12524 (17)0.18231 (11)0.44190 (10)0.0161 (3)
C100.27258 (18)0.12805 (11)0.49893 (11)0.0192 (3)
H100.39940.13390.46150.023*
C110.2316 (2)0.06493 (12)0.61182 (11)0.0233 (3)
H110.33120.02680.65160.028*
C120.0459 (2)0.05757 (12)0.66629 (11)0.0247 (3)
H120.01850.01500.74350.030*
C130.10000 (19)0.11217 (12)0.60827 (11)0.0233 (3)
H130.22710.10710.64600.028*
C140.06071 (18)0.17416 (12)0.49517 (11)0.0195 (3)
H140.15990.21050.45480.023*
C150.22403 (17)0.28338 (11)0.03230 (10)0.0173 (3)
H150.20940.36260.02560.021*
C160.03012 (17)0.24701 (12)0.08034 (10)0.0175 (3)
C170.21402 (17)0.09987 (11)0.02122 (10)0.0162 (3)
C180.49912 (18)0.18208 (12)0.12386 (10)0.0207 (3)
H18A0.58130.09640.13040.031*
H18B0.57070.23750.10960.031*
H18C0.45620.21720.19620.031*
O1S0.57472 (13)0.29564 (10)0.30873 (9)0.0304 (3)
H1S0.68530.29520.26850.046*
C1S0.5142 (2)0.39650 (15)0.37674 (14)0.0336 (3)
H1S10.59910.38110.43090.040*
H1S20.38370.39650.42370.040*
C2S0.5151 (2)0.52356 (16)0.30585 (16)0.0413 (4)
H2S10.64440.52480.26010.062*
H2S20.47290.58940.35700.062*
H2S30.42850.54050.25350.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (4)0.0146 (4)0.0180 (4)0.0041 (3)0.0011 (3)0.0034 (3)
N10.0206 (5)0.0124 (5)0.0138 (5)0.0041 (4)0.0026 (4)0.0012 (4)
C10.0187 (6)0.0160 (6)0.0152 (6)0.0067 (5)0.0032 (5)0.0030 (4)
O20.0216 (5)0.0249 (5)0.0171 (4)0.0115 (4)0.0028 (3)0.0033 (3)
N20.0185 (5)0.0188 (5)0.0149 (5)0.0057 (4)0.0020 (4)0.0028 (4)
C20.0216 (6)0.0160 (6)0.0145 (6)0.0076 (5)0.0020 (5)0.0016 (5)
O30.0225 (5)0.0246 (5)0.0212 (5)0.0051 (4)0.0000 (4)0.0080 (4)
N30.0177 (5)0.0193 (5)0.0199 (5)0.0067 (4)0.0011 (4)0.0068 (4)
C30.0231 (6)0.0168 (6)0.0160 (6)0.0068 (5)0.0061 (5)0.0026 (5)
N40.0191 (5)0.0193 (5)0.0151 (5)0.0075 (4)0.0000 (4)0.0056 (4)
C40.0289 (7)0.0183 (6)0.0182 (6)0.0084 (5)0.0086 (5)0.0002 (5)
C50.0306 (7)0.0136 (6)0.0253 (7)0.0054 (5)0.0126 (5)0.0003 (5)
C60.0253 (6)0.0173 (6)0.0234 (6)0.0017 (5)0.0096 (5)0.0068 (5)
C70.0220 (6)0.0179 (6)0.0165 (6)0.0048 (5)0.0061 (5)0.0033 (5)
C80.0215 (6)0.0140 (6)0.0173 (6)0.0058 (5)0.0071 (5)0.0017 (4)
C90.0236 (6)0.0110 (5)0.0131 (6)0.0043 (4)0.0017 (5)0.0028 (4)
C100.0230 (6)0.0150 (6)0.0188 (6)0.0033 (5)0.0032 (5)0.0042 (5)
C110.0337 (7)0.0156 (6)0.0194 (6)0.0009 (5)0.0089 (5)0.0024 (5)
C120.0409 (8)0.0152 (6)0.0154 (6)0.0078 (5)0.0014 (5)0.0011 (5)
C130.0280 (7)0.0191 (6)0.0206 (6)0.0099 (5)0.0044 (5)0.0053 (5)
C140.0221 (6)0.0162 (6)0.0203 (6)0.0047 (5)0.0032 (5)0.0043 (5)
C150.0216 (6)0.0165 (6)0.0140 (6)0.0060 (5)0.0023 (5)0.0029 (4)
C160.0201 (6)0.0190 (6)0.0130 (5)0.0053 (5)0.0032 (5)0.0014 (4)
C170.0186 (6)0.0179 (6)0.0126 (5)0.0056 (5)0.0039 (4)0.0005 (4)
C180.0218 (6)0.0246 (6)0.0164 (6)0.0099 (5)0.0011 (5)0.0054 (5)
O1S0.0213 (5)0.0303 (5)0.0384 (6)0.0077 (4)0.0007 (4)0.0078 (4)
C1S0.0254 (7)0.0339 (8)0.0426 (9)0.0049 (6)0.0067 (6)0.0115 (7)
C2S0.0424 (9)0.0358 (9)0.0530 (10)0.0102 (7)0.0231 (8)0.0044 (7)
Geometric parameters (Å, º) top
O1—C11.2226 (15)C7—C81.3770 (17)
N1—C11.3658 (15)C7—H70.9500
N1—C81.4220 (15)C9—C141.3876 (18)
N1—C91.4353 (15)C9—C101.3886 (18)
C1—C21.5531 (16)C10—C111.3929 (18)
O2—C21.4136 (15)C10—H100.9500
O2—H20.8400C11—C121.386 (2)
N2—C161.3477 (16)C11—H110.9500
N2—C171.3562 (15)C12—C131.388 (2)
C2—C31.5071 (17)C12—H120.9500
C2—C151.5472 (16)C13—C141.3895 (18)
O3—C161.2314 (15)C13—H130.9500
N3—C171.3123 (16)C14—H140.9500
N3—H3A0.8800C15—C161.5419 (17)
N3—H3B0.8800C15—H151.0000
C3—C41.3794 (17)C18—H18A0.9800
C3—C81.3918 (17)C18—H18B0.9800
N4—C171.3546 (16)C18—H18C0.9800
N4—C151.4560 (15)O1S—C1S1.4181 (18)
N4—C181.4621 (15)O1S—H1S0.8400
C4—C51.3972 (18)C1S—C2S1.483 (2)
C4—H40.9500C1S—H1S10.9900
C5—C61.3870 (19)C1S—H1S20.9900
C5—H50.9500C2S—H2S10.9800
C6—C71.3960 (18)C2S—H2S20.9800
C6—H60.9500C2S—H2S30.9800
C1—N1—C8110.74 (10)C12—C11—C10120.23 (12)
C1—N1—C9124.57 (10)C12—C11—H11119.9
C8—N1—C9123.74 (10)C10—C11—H11119.9
O1—C1—N1125.87 (11)C11—C12—C13120.17 (12)
O1—C1—C2125.91 (10)C11—C12—H12119.9
N1—C1—C2108.21 (10)C13—C12—H12119.9
C2—O2—H2109.5C12—C13—C14120.17 (12)
C16—N2—C17106.75 (10)C12—C13—H13119.9
O2—C2—C3115.27 (10)C14—C13—H13119.9
O2—C2—C15106.63 (9)C9—C14—C13119.20 (12)
C3—C2—C15110.59 (10)C9—C14—H14120.4
O2—C2—C1111.04 (9)C13—C14—H14120.4
C3—C2—C1101.86 (9)N4—C15—C16100.87 (9)
C15—C2—C1111.52 (9)N4—C15—C2114.64 (10)
C17—N3—H3A120.0C16—C15—C2112.68 (9)
C17—N3—H3B120.0N4—C15—H15109.4
H3A—N3—H3B120.0C16—C15—H15109.4
C4—C3—C8120.49 (11)C2—C15—H15109.4
C4—C3—C2130.40 (11)O3—C16—N2127.04 (11)
C8—C3—C2109.10 (10)O3—C16—C15123.08 (11)
C17—N4—C15107.56 (10)N2—C16—C15109.88 (10)
C17—N4—C18122.36 (10)N3—C17—N4123.26 (11)
C15—N4—C18122.80 (10)N3—C17—N2122.16 (11)
C3—C4—C5118.36 (11)N4—C17—N2114.58 (10)
C3—C4—H4120.8N4—C18—H18A109.5
C5—C4—H4120.8N4—C18—H18B109.5
C6—C5—C4120.40 (11)H18A—C18—H18B109.5
C6—C5—H5119.8N4—C18—H18C109.5
C4—C5—H5119.8H18A—C18—H18C109.5
C5—C6—C7121.51 (12)H18B—C18—H18C109.5
C5—C6—H6119.2C1S—O1S—H1S109.5
C7—C6—H6119.2O1S—C1S—C2S112.92 (14)
C8—C7—C6117.14 (11)O1S—C1S—H1S1109.0
C8—C7—H7121.4C2S—C1S—H1S1109.0
C6—C7—H7121.4O1S—C1S—H1S2109.0
C7—C8—C3122.10 (11)C2S—C1S—H1S2109.0
C7—C8—N1128.13 (11)H1S1—C1S—H1S2107.8
C3—C8—N1109.73 (10)C1S—C2S—H2S1109.5
C14—C9—C10121.20 (11)C1S—C2S—H2S2109.5
C14—C9—N1119.23 (11)H2S1—C2S—H2S2109.5
C10—C9—N1119.56 (11)C1S—C2S—H2S3109.5
C9—C10—C11119.02 (12)H2S1—C2S—H2S3109.5
C9—C10—H10120.5H2S2—C2S—H2S3109.5
C11—C10—H10120.5
C8—N1—C1—O1174.88 (11)C1—N1—C9—C1057.36 (16)
C9—N1—C1—O15.70 (19)C8—N1—C9—C10110.45 (13)
C8—N1—C1—C25.06 (13)C14—C9—C10—C110.27 (18)
C9—N1—C1—C2174.24 (10)N1—C9—C10—C11179.09 (10)
O1—C1—C2—O250.77 (15)C9—C10—C11—C120.49 (18)
N1—C1—C2—O2129.18 (10)C10—C11—C12—C130.53 (19)
O1—C1—C2—C3174.02 (12)C11—C12—C13—C140.19 (19)
N1—C1—C2—C35.93 (12)C10—C9—C14—C130.99 (18)
O1—C1—C2—C1568.01 (15)N1—C9—C14—C13178.38 (11)
N1—C1—C2—C15112.05 (11)C12—C13—C14—C90.94 (18)
O2—C2—C3—C453.97 (17)C17—N4—C15—C164.68 (12)
C15—C2—C3—C467.06 (16)C18—N4—C15—C16155.35 (10)
C1—C2—C3—C4174.30 (13)C17—N4—C15—C2126.01 (10)
O2—C2—C3—C8125.10 (11)C18—N4—C15—C283.31 (13)
C15—C2—C3—C8113.87 (11)O2—C2—C15—N452.11 (12)
C1—C2—C3—C84.77 (12)C3—C2—C15—N4178.14 (9)
C8—C3—C4—C50.01 (18)C1—C2—C15—N469.27 (13)
C2—C3—C4—C5178.97 (12)O2—C2—C15—C16166.73 (9)
C3—C4—C5—C60.60 (19)C3—C2—C15—C1667.24 (13)
C4—C5—C6—C70.32 (19)C1—C2—C15—C1645.36 (13)
C5—C6—C7—C80.56 (18)C17—N2—C16—O3178.51 (12)
C6—C7—C8—C31.17 (18)C17—N2—C16—C151.87 (13)
C6—C7—C8—N1176.39 (11)N4—C15—C16—O3177.90 (11)
C4—C3—C8—C70.91 (19)C2—C15—C16—O355.19 (15)
C2—C3—C8—C7179.91 (11)N4—C15—C16—N21.74 (12)
C4—C3—C8—N1177.05 (11)C2—C15—C16—N2124.45 (11)
C2—C3—C8—N12.13 (14)C15—N4—C17—N3172.92 (11)
C1—N1—C8—C7175.84 (12)C18—N4—C17—N322.09 (18)
C9—N1—C8—C76.55 (19)C15—N4—C17—N26.58 (13)
C1—N1—C8—C31.96 (14)C18—N4—C17—N2157.41 (11)
C9—N1—C8—C3171.25 (11)C16—N2—C17—N3174.16 (11)
C1—N1—C9—C14123.26 (13)C16—N2—C17—N45.35 (14)
C8—N1—C9—C1468.92 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1S0.842.192.9579 (14)152
O2—H2···O3i0.842.583.2440 (12)137
N3—H3A···O1ii0.882.022.8898 (13)169
N3—H3B···N2iii0.882.062.9391 (15)174
O1S—H1S···O3i0.841.892.7048 (13)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H16N4O3·C2H6O
Mr382.42
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.4912 (1), 11.0018 (2), 12.0835 (2)
α, β, γ (°)78.152 (1), 74.413 (1), 74.090 (1)
V3)913.15 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.11 × 0.11 × 0.08
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker, 2006)
Tmin, Tmax0.828, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
13576, 3294, 3126
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.07
No. of reflections3294
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1S0.842.192.9579 (14)152.0
O2—H2···O3i0.842.583.2440 (12)136.6
N3—H3A···O1ii0.882.022.8898 (13)169.3
N3—H3B···N2iii0.882.062.9391 (15)173.5
O1S—H1S···O3i0.841.892.7048 (13)162.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z.
 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457 (PAC) and by NSF MRI grant CHE 0319176 (SP).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCane, A., Tournaire, M. C., Barritault, D. & Crumeyrolle-Arias, M. (2000). Biochem. Biophys. Res. Commun. 276, 379–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrolova, N. A., Kravtsov, V. K., Biyushkin, V. N., Chumakov, Yu. M., Bel'kova, O. N. & Malinovskii, T. I. (1988). J. Struct. Chem. 29, 491–493.  CrossRef Web of Science Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.  PubMed CAS Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636–5645.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821–6824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002). Acta Cryst. C58, o24–o25.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZimmerman, H. E. & Traxler, M. D. (1957). J. Am. Chem. Soc. 79, 1920–1923.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2439-o2440
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds