metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1205-m1206

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis­­(di­methyl sulfoxide)nickel(II)

aLaboratoire d'Electrochimie des Matériaux, Moléculaires et Complexes, Département de Génie des Procédés, Faculté des Science de l'Ingénieur, Université Farhet Abbas de Setif, DZ-19000 Sétif, Algeria, bUniversité 20 Aout 1955, Skikda, Algeria, cCIMM, CNRS UMR 6200, Faculté des Science, Angers Cedex, France, and dSONAS, EA 921, Université D'Angers, Faculté de Pharmacie, Angers Cedex, France
*Correspondence e-mail: boufas_sihem@yahoo.fr

(Received 20 August 2009; accepted 28 August 2009; online 12 September 2009)

In the title compound, [Ni(C8H7O4)2{(CH3)2SO}2], the NiII atom is located on a crystallographic centre of symmetry and has a distorted octa­hedral coordination geometry of type MO6. The bidentate dehydro­acetic acid (DHA) ligands occupy the equatorial plane of the complex in a trans configuration, and the dimethyl sulfoxide (DMSO) ligands are weakly coordinated through their O atoms in the axial positions.

Related literature

3-Acetyl-4-hydr­oxy-6-methyl-2-oxo-2H-pyran (dehydro­acetic acid) (Arndt et al., 1936[Arndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Chem. Berichte Teil B, 69, 2373-2380.]) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988[Tan, S. F. & Ang, K. P. (1988). Transition Met. Chem. 13, 64-68.]). It has been shown to possess modest anti­fungal properties, see: Rao et al. (1978[Rao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402-404.]). For natural fungicides possessing structures analogous to 5,6-dihydro­dehydroacetic acid, see: Bartels-Keith (1960[Bartels-Keith, J. R. (1960). J. Chem. Soc. pp. 1662-1665.]); Miyakado et al. (1982[Miyakado, M., Inoue, S., Tanabe, Y., Watanabe, K., Ohno, N., Yoshioka, H. & Mabay, T. (1982). J. Chem. Lett. pp. 1539-1542.]); Ayer et al. (1988[Ayer, W. A., Figueroa-Villar, J. D. & Migaj, B. (1988). Can. J. Chem. 66, 506-521.]). The complexes of DHA with copper and with several other transition metal cations are fungistatic, see: Rao et al. (1978[Rao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402-404.]). For the nickel–DHA complex, see: Casabò et al. (1987[Casabò, J., Marquet, J., Moreno-Manas, M., Prior, M. & Teixidor, F. (1987). Polyhedron, 6, 1235-1238.]). The configuration of the complex mol­ecule is similar to that found in [Zn(DHA)2·2(DMSO) and Cd(DHA)2·2(DMSO)] (Zucolotto Chalaça et al., 2002[Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45-52.]), [Cu(DHA)2·2(DMSO)] (Djedouani et al., 2006[Djedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133-m135.]) and bis­(4,6-dibromo-2-formyl­phenolato-κ2O,O′)-bis­(dimethyl sulfoxide)nickel(II) (Zhang et al., 2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]). For Ni—ODMSO distances in similar structures, see: Ma et al. (2003[Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m483-m484.]); Tahir et al. (2007[Tahir, A. A., Hamid, M., Zeller, M., Mazhar, M. & Hunter, A. D. (2007). Acta Cryst. E63, m272-m274.]); Zhang et al. (2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O4)2(C2H6OS)2]

  • Mr = 549.24

  • Monoclinic, P 21 /c

  • a = 11.3850 (10) Å

  • b = 6.2833 (4) Å

  • c = 19.7434 (15) Å

  • β = 123.525 (6)°

  • V = 1177.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.902

  • 14084 measured reflections

  • 2628 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.11

  • 2628 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 1.9849 (16)
Ni1—O3 2.0159 (15)
Ni1—O1 2.1255 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4ii 0.96 2.55 3.384 (4) 145
C2—H2B⋯O4ii 0.96 2.53 3.370 (4) 146
C2—H2C⋯O2iii 0.96 2.46 3.378 (4) 160
Symmetry codes: (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT and EVAL. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties (Rao et al., 1978). The importance of similar pyrones as potential fungicides is reinforced by the existence of several natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, such as alternaric acid (Bartels-Keith, 1960), the podoblastins (Miyakado et al., 1982) and lachnelluloic acid (Ayer et al., 1988). Also, it has been shown that the complexes of DHA with copper and with several other transition metal cations are fungistatic (Rao et al., 1978). This has motivated our study of the structural characterization of complexes of dehydroacetic acid. The complex of DHA with nickel was previously reported by Casabò et al. (1987), but their characterization of the compound was based only on thermal and elemental analysis, and on IR and NMR spectroscopy.

We present here the crystal structure determination of the title complex, [Ni(DHA)2.2(DMSO)], (I) (DMSO = dimethylsulfoxide). The nature of the title compound, (I), was established by an X-ray structure determination and is shown in Fig. 1

The Ni atom lies on a crystallographic centre of symmetry with the ligands bonded to nickel in an all-trans fashion. The configuration of the complex molecule is similar to that found in [Zn(DHA)2. 2(DMSO); Cd(DHA)2.2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2. 2(DMSO)] (Djedouani et al., 2006), with (DHA: dehydroacetic acid) and Bis(4,6-dibromo-2-formylphenolato-κ2 O,O')-bis(dimethyl sulfoxide)nickel(II), [Ni(C7H3Br2O2)2(C2H6OS)2] (Zhang et al., 2007).

The coordination polyhedron around the Ni atom is a slightly distorted octahedron (Table 1), with the O atoms of the DMSO groups in axial positions; and the Ni—ODMSO distance is in agreement with literature values: [2.1139 (12) Å - 1.9897 (13) Å (Tahir et al., 2007), 1.998 (3) Å - 2.105 (3) Å (Zhang et al. 2007), 2.030 (2) Å- 2.057 (2)Å (Ma et al., 2003)].

The orientation of the DMSO molecule can be described by the torsion angles O3—Ni—O1—S [43.32 (4) °] and O2—Ni—O1—S [-137.70 (4) °]. The packing of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 2) which form a three-dimensional network (Fig. 2).

Related literature top

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties, see: Rao et al. (1978). For natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, see: Bartels-Keith (1960); Miyakado et al. (1982); Ayer et al. (1988). The complexes of DHA with copper and with several other transition metal cations are fungistatic, see: Rao et al. (1978). For the nickel–DHA complex, see: Casabò et al. (1987). The configuration of the complex molecule is similar to that found in [Zn(DHA)2.2(DMSO) and Cd(DHA)2.2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2.2(DMSO)] (Djedouani et al., 2006) and bis(4,6-dibromo-2-formylphenolato-κ2O,O')-bis(dimethyl sulfoxide)nickel(II) (Zhang et al., 2007). For Ni—ODMSO distances in similar structures, see: Ma et al. (2003); Tahir et al. (2007); Zhang et al. (2007).

Experimental top

Compound (I) was prepared by the reaction of dehydroacetic acid with nickel (II) chloride hexahydrate in the presence of sodium acetate (Casabò et al. 1987). Crystals of (I) were grown by slow evaporation of a dimethylsulfoxide solution..

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I); Hydrogen atoms have been omitted for clarity.
Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis(dimethyl sulfoxide)nickel(II) top
Crystal data top
[Ni(C8H7O4)2(C2H6OS)2]F(000) = 572
Mr = 549.24Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2190 reflections
a = 11.385 (1) Åθ = 2.8–27.3°
b = 6.2833 (4) ŵ = 1.05 mm1
c = 19.7434 (15) ÅT = 100 K
β = 123.525 (6)°Plates, colourless
V = 1177.40 (16) Å30.25 × 0.15 × 0.1 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2628 independent reflections
Radiation source: fine-focus sealed X-ray tube1962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.902, Tmax = 0.902k = 87
14084 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2 + 0.3428P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2628 reflectionsΔρmax = 0.55 e Å3
156 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (19)
Crystal data top
[Ni(C8H7O4)2(C2H6OS)2]V = 1177.40 (16) Å3
Mr = 549.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.385 (1) ŵ = 1.05 mm1
b = 6.2833 (4) ÅT = 100 K
c = 19.7434 (15) Å0.25 × 0.15 × 0.1 mm
β = 123.525 (6)°
Data collection top
Nonius KappaCCD
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1962 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.902Rint = 0.071
14084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.11Δρmax = 0.55 e Å3
2628 reflectionsΔρmin = 0.97 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50.50.50.02521 (16)
S10.75777 (6)0.76611 (10)0.53190 (4)0.03283 (19)
O50.22643 (18)0.1935 (3)0.18093 (9)0.0384 (4)
O10.62169 (17)0.6626 (3)0.46467 (10)0.0387 (4)
O20.47029 (16)0.2626 (3)0.42577 (9)0.0307 (4)
O30.32165 (16)0.6292 (3)0.40600 (9)0.0316 (4)
O40.1020 (2)0.4798 (3)0.15900 (11)0.0478 (5)
C60.2779 (2)0.4022 (4)0.29848 (13)0.0252 (5)
C30.1192 (3)0.7190 (4)0.28219 (15)0.0378 (6)
H3A0.11010.81330.31730.057*
H3B0.03680.6310.25270.057*
H3C0.12910.8010.24460.057*
C100.3256 (3)0.0457 (4)0.23083 (15)0.0317 (6)
C80.3859 (2)0.2500 (4)0.34964 (14)0.0253 (5)
C90.3994 (2)0.0651 (4)0.31075 (14)0.0296 (5)
H90.46160.04260.34280.036*
C50.2474 (2)0.5807 (4)0.33237 (13)0.0265 (5)
C20.7743 (3)1.0036 (4)0.48915 (18)0.0469 (7)
H2A0.76260.97180.43820.07*
H2B0.86591.06420.52560.07*
H2C0.70341.10330.48050.07*
C70.1958 (2)0.3697 (4)0.21184 (14)0.0312 (6)
C40.3357 (3)0.1273 (5)0.18287 (17)0.0470 (7)
H4A0.40530.22890.21910.071*
H4B0.36230.06790.14840.071*
H4C0.2460.19660.15010.071*
C10.8954 (3)0.6199 (5)0.53594 (19)0.0526 (8)
H1A0.89720.47760.55420.079*
H1B0.98410.68790.5730.079*
H1C0.87920.61540.48280.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0190 (2)0.0297 (3)0.0197 (2)0.00047 (17)0.00610 (17)0.00322 (16)
S10.0280 (3)0.0421 (4)0.0247 (3)0.0061 (3)0.0122 (3)0.0037 (3)
O50.0403 (10)0.0450 (11)0.0241 (9)0.0070 (8)0.0141 (8)0.0024 (7)
O10.0292 (9)0.0534 (11)0.0275 (9)0.0120 (8)0.0119 (8)0.0051 (8)
O20.0245 (8)0.0336 (9)0.0212 (8)0.0057 (7)0.0046 (7)0.0021 (7)
O30.0257 (8)0.0336 (10)0.0260 (9)0.0043 (7)0.0083 (7)0.0040 (7)
O40.0461 (12)0.0539 (12)0.0237 (9)0.0148 (10)0.0068 (8)0.0052 (8)
C60.0210 (11)0.0284 (13)0.0226 (11)0.0001 (10)0.0099 (9)0.0003 (9)
C30.0292 (13)0.0375 (15)0.0335 (13)0.0092 (11)0.0090 (11)0.0011 (11)
C100.0273 (13)0.0352 (14)0.0342 (13)0.0012 (11)0.0179 (11)0.0038 (10)
C80.0209 (11)0.0285 (12)0.0255 (11)0.0034 (10)0.0122 (9)0.0008 (9)
C90.0225 (12)0.0309 (13)0.0286 (13)0.0003 (10)0.0098 (10)0.0023 (10)
C50.0202 (11)0.0286 (13)0.0266 (12)0.0018 (10)0.0104 (10)0.0025 (9)
C20.0358 (15)0.0372 (16)0.0524 (17)0.0002 (12)0.0148 (13)0.0047 (12)
C70.0292 (13)0.0347 (14)0.0264 (12)0.0010 (11)0.0132 (10)0.0013 (10)
C40.0510 (17)0.0524 (18)0.0395 (15)0.0046 (15)0.0262 (14)0.0127 (13)
C10.0350 (15)0.0460 (18)0.0587 (19)0.0043 (14)0.0144 (14)0.0056 (14)
Geometric parameters (Å, º) top
Ni1—O2i1.9849 (16)C3—C51.507 (3)
Ni1—O21.9849 (16)C3—H3A0.96
Ni1—O32.0159 (15)C3—H3B0.96
Ni1—O3i2.0159 (15)C3—H3C0.96
Ni1—O1i2.1255 (18)C10—C91.321 (3)
Ni1—O12.1255 (18)C10—C41.487 (4)
S1—O11.5211 (17)C8—C91.447 (3)
S1—C21.775 (3)C9—H90.93
S1—C11.780 (3)C2—H2A0.96
O5—C101.371 (3)C2—H2B0.96
O5—C71.398 (3)C2—H2C0.96
O2—C81.262 (3)C4—H4A0.96
O3—C51.250 (3)C4—H4B0.96
O4—C71.215 (3)C4—H4C0.96
C6—C81.440 (3)C1—H1A0.96
C6—C71.441 (3)C1—H1B0.96
C6—C51.443 (3)C1—H1C0.96
O2i—Ni1—O2180C9—C10—C4127.3 (2)
O2i—Ni1—O392.94 (6)O5—C10—C4111.1 (2)
O2—Ni1—O387.06 (6)O2—C8—C6125.9 (2)
O2i—Ni1—O3i87.06 (6)O2—C8—C9116.6 (2)
O2—Ni1—O3i92.94 (6)C6—C8—C9117.4 (2)
O3—Ni1—O3i180.0000 (10)C10—C9—C8121.6 (2)
O2i—Ni1—O1i89.72 (7)C10—C9—H9119.2
O2—Ni1—O1i90.28 (7)C8—C9—H9119.2
O3—Ni1—O1i89.31 (7)O3—C5—C6123.2 (2)
O3i—Ni1—O1i90.69 (7)O3—C5—C3114.3 (2)
O2i—Ni1—O190.28 (7)C6—C5—C3122.51 (19)
O2—Ni1—O189.72 (7)S1—C2—H2A109.5
O3—Ni1—O190.69 (7)S1—C2—H2B109.5
O3i—Ni1—O189.31 (7)H2A—C2—H2B109.5
O1i—Ni1—O1180S1—C2—H2C109.5
O1—S1—C2105.60 (12)H2A—C2—H2C109.5
O1—S1—C1105.41 (12)H2B—C2—H2C109.5
C2—S1—C197.65 (15)O4—C7—O5112.9 (2)
C10—O5—C7121.85 (18)O4—C7—C6128.7 (2)
S1—O1—Ni1116.97 (9)O5—C7—C6118.4 (2)
C8—O2—Ni1129.32 (15)C10—C4—H4A109.5
C5—O3—Ni1131.49 (15)C10—C4—H4B109.5
C8—C6—C7118.8 (2)H4A—C4—H4B109.5
C8—C6—C5121.45 (19)C10—C4—H4C109.5
C7—C6—C5119.74 (19)H4A—C4—H4C109.5
C5—C3—H3A109.5H4B—C4—H4C109.5
C5—C3—H3B109.5S1—C1—H1A109.5
H3A—C3—H3B109.5S1—C1—H1B109.5
C5—C3—H3C109.5H1A—C1—H1B109.5
H3A—C3—H3C109.5S1—C1—H1C109.5
H3B—C3—H3C109.5H1A—C1—H1C109.5
C9—C10—O5121.6 (2)H1B—C1—H1C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4ii0.962.553.384 (4)145
C2—H2B···O4ii0.962.533.370 (4)146
C2—H2C···O2iii0.962.463.378 (4)160
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O4)2(C2H6OS)2]
Mr549.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.385 (1), 6.2833 (4), 19.7434 (15)
β (°) 123.525 (6)
V3)1177.40 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.25 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.902, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
14084, 2628, 1962
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.11
No. of reflections2628
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.97

Computer programs: COLLECT (Nonius, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected bond lengths (Å) top
Ni1—O2i1.9849 (16)Ni1—O3i2.0159 (15)
Ni1—O21.9849 (16)Ni1—O1i2.1255 (18)
Ni1—O32.0159 (15)Ni1—O12.1255 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4ii0.96002.55003.384 (4)145.00
C2—H2B···O4ii0.96002.53003.370 (4)146.00
C2—H2C···O2iii0.96002.46003.378 (4)160.00
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by Université Farhet Abbas de Sétif, Sétif, Algeria.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Chem. Berichte Teil B, 69, 2373–2380.  Google Scholar
First citationAyer, W. A., Figueroa-Villar, J. D. & Migaj, B. (1988). Can. J. Chem. 66, 506–521.  CrossRef CAS Web of Science Google Scholar
First citationBartels-Keith, J. R. (1960). J. Chem. Soc. pp. 1662–1665.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasabò, J., Marquet, J., Moreno-Manas, M., Prior, M. & Teixidor, F. (1987). Polyhedron, 6, 1235–1238.  Google Scholar
First citationDjedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133–m135.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMabay, T. (1982). J. Chem. Lett. pp. 1539–1542.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyakado, M., Inoue, S., Tanabe, Y., Watanabe, K., Ohno, N., Yoshioka, H. & Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT and EVAL. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402–404.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, A. A., Hamid, M., Zeller, M., Mazhar, M. & Hunter, A. D. (2007). Acta Cryst. E63, m272–m274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. F. & Ang, K. P. (1988). Transition Met. Chem. 13, 64–68.  CrossRef CAS Web of Science Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45–52.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1205-m1206
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds