metal-organic compounds
Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis(dimethyl sulfoxide)nickel(II)
aLaboratoire d'Electrochimie des Matériaux, Moléculaires et Complexes, Département de Génie des Procédés, Faculté des Science de l'Ingénieur, Université Farhet Abbas de Setif, DZ-19000 Sétif, Algeria, bUniversité 20 Aout 1955, Skikda, Algeria, cCIMM, CNRS UMR 6200, Faculté des Science, Angers Cedex, France, and dSONAS, EA 921, Université D'Angers, Faculté de Pharmacie, Angers Cedex, France
*Correspondence e-mail: boufas_sihem@yahoo.fr
In the title compound, [Ni(C8H7O4)2{(CH3)2SO}2], the NiII atom is located on a crystallographic centre of symmetry and has a distorted octahedral coordination geometry of type MO6. The bidentate dehydroacetic acid (DHA) ligands occupy the equatorial plane of the complex in a trans configuration, and the dimethyl sulfoxide (DMSO) ligands are weakly coordinated through their O atoms in the axial positions.
Related literature
3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties, see: Rao et al. (1978). For natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, see: Bartels-Keith (1960); Miyakado et al. (1982); Ayer et al. (1988). The complexes of DHA with copper and with several other transition metal cations are fungistatic, see: Rao et al. (1978). For the nickel–DHA complex, see: Casabò et al. (1987). The configuration of the complex molecule is similar to that found in [Zn(DHA)2·2(DMSO) and Cd(DHA)2·2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2·2(DMSO)] (Djedouani et al., 2006) and bis(4,6-dibromo-2-formylphenolato-κ2O,O′)-bis(dimethyl sulfoxide)nickel(II) (Zhang et al., 2007). For Ni—ODMSO distances in similar structures, see: Ma et al. (2003); Tahir et al. (2007); Zhang et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2002); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536809034655/hg2559sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034655/hg2559Isup2.hkl
Compound (I) was prepared by the reaction of dehydroacetic acid with nickel (II) chloride hexahydrate in the presence of sodium acetate (Casabò et al. 1987). Crystals of (I) were grown by slow evaporation of a dimethylsulfoxide solution..
H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.
Data collection: COLLECT (Nonius, 2002); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).[Ni(C8H7O4)2(C2H6OS)2] | F(000) = 572 |
Mr = 549.24 | Dx = 1.549 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2190 reflections |
a = 11.385 (1) Å | θ = 2.8–27.3° |
b = 6.2833 (4) Å | µ = 1.05 mm−1 |
c = 19.7434 (15) Å | T = 100 K |
β = 123.525 (6)° | Plates, colourless |
V = 1177.40 (16) Å3 | 0.25 × 0.15 × 0.1 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 2628 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1962 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −14→14 |
Tmin = 0.902, Tmax = 0.902 | k = −8→7 |
14084 measured reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2 + 0.3428P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
2628 reflections | Δρmax = 0.55 e Å−3 |
156 parameters | Δρmin = −0.97 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0084 (19) |
[Ni(C8H7O4)2(C2H6OS)2] | V = 1177.40 (16) Å3 |
Mr = 549.24 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.385 (1) Å | µ = 1.05 mm−1 |
b = 6.2833 (4) Å | T = 100 K |
c = 19.7434 (15) Å | 0.25 × 0.15 × 0.1 mm |
β = 123.525 (6)° |
Nonius KappaCCD diffractometer | 2628 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1962 reflections with I > 2σ(I) |
Tmin = 0.902, Tmax = 0.902 | Rint = 0.071 |
14084 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.55 e Å−3 |
2628 reflections | Δρmin = −0.97 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5 | 0.5 | 0.5 | 0.02521 (16) | |
S1 | 0.75777 (6) | 0.76611 (10) | 0.53190 (4) | 0.03283 (19) | |
O5 | 0.22643 (18) | 0.1935 (3) | 0.18093 (9) | 0.0384 (4) | |
O1 | 0.62169 (17) | 0.6626 (3) | 0.46467 (10) | 0.0387 (4) | |
O2 | 0.47029 (16) | 0.2626 (3) | 0.42577 (9) | 0.0307 (4) | |
O3 | 0.32165 (16) | 0.6292 (3) | 0.40600 (9) | 0.0316 (4) | |
O4 | 0.1020 (2) | 0.4798 (3) | 0.15900 (11) | 0.0478 (5) | |
C6 | 0.2779 (2) | 0.4022 (4) | 0.29848 (13) | 0.0252 (5) | |
C3 | 0.1192 (3) | 0.7190 (4) | 0.28219 (15) | 0.0378 (6) | |
H3A | 0.1101 | 0.8133 | 0.3173 | 0.057* | |
H3B | 0.0368 | 0.631 | 0.2527 | 0.057* | |
H3C | 0.1291 | 0.801 | 0.2446 | 0.057* | |
C10 | 0.3256 (3) | 0.0457 (4) | 0.23083 (15) | 0.0317 (6) | |
C8 | 0.3859 (2) | 0.2500 (4) | 0.34964 (14) | 0.0253 (5) | |
C9 | 0.3994 (2) | 0.0651 (4) | 0.31075 (14) | 0.0296 (5) | |
H9 | 0.4616 | −0.0426 | 0.3428 | 0.036* | |
C5 | 0.2474 (2) | 0.5807 (4) | 0.33237 (13) | 0.0265 (5) | |
C2 | 0.7743 (3) | 1.0036 (4) | 0.48915 (18) | 0.0469 (7) | |
H2A | 0.7626 | 0.9718 | 0.4382 | 0.07* | |
H2B | 0.8659 | 1.0642 | 0.5256 | 0.07* | |
H2C | 0.7034 | 1.1033 | 0.4805 | 0.07* | |
C7 | 0.1958 (2) | 0.3697 (4) | 0.21184 (14) | 0.0312 (6) | |
C4 | 0.3357 (3) | −0.1273 (5) | 0.18287 (17) | 0.0470 (7) | |
H4A | 0.4053 | −0.2289 | 0.2191 | 0.071* | |
H4B | 0.3623 | −0.0679 | 0.1484 | 0.071* | |
H4C | 0.246 | −0.1966 | 0.1501 | 0.071* | |
C1 | 0.8954 (3) | 0.6199 (5) | 0.53594 (19) | 0.0526 (8) | |
H1A | 0.8972 | 0.4776 | 0.5542 | 0.079* | |
H1B | 0.9841 | 0.6879 | 0.573 | 0.079* | |
H1C | 0.8792 | 0.6154 | 0.4828 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0190 (2) | 0.0297 (3) | 0.0197 (2) | 0.00047 (17) | 0.00610 (17) | −0.00322 (16) |
S1 | 0.0280 (3) | 0.0421 (4) | 0.0247 (3) | −0.0061 (3) | 0.0122 (3) | −0.0037 (3) |
O5 | 0.0403 (10) | 0.0450 (11) | 0.0241 (9) | 0.0070 (8) | 0.0141 (8) | −0.0024 (7) |
O1 | 0.0292 (9) | 0.0534 (11) | 0.0275 (9) | −0.0120 (8) | 0.0119 (8) | −0.0051 (8) |
O2 | 0.0245 (8) | 0.0336 (9) | 0.0212 (8) | 0.0057 (7) | 0.0046 (7) | −0.0021 (7) |
O3 | 0.0257 (8) | 0.0336 (10) | 0.0260 (9) | 0.0043 (7) | 0.0083 (7) | −0.0040 (7) |
O4 | 0.0461 (12) | 0.0539 (12) | 0.0237 (9) | 0.0148 (10) | 0.0068 (8) | 0.0052 (8) |
C6 | 0.0210 (11) | 0.0284 (13) | 0.0226 (11) | −0.0001 (10) | 0.0099 (9) | 0.0003 (9) |
C3 | 0.0292 (13) | 0.0375 (15) | 0.0335 (13) | 0.0092 (11) | 0.0090 (11) | −0.0011 (11) |
C10 | 0.0273 (13) | 0.0352 (14) | 0.0342 (13) | −0.0012 (11) | 0.0179 (11) | −0.0038 (10) |
C8 | 0.0209 (11) | 0.0285 (12) | 0.0255 (11) | −0.0034 (10) | 0.0122 (9) | −0.0008 (9) |
C9 | 0.0225 (12) | 0.0309 (13) | 0.0286 (13) | 0.0003 (10) | 0.0098 (10) | −0.0023 (10) |
C5 | 0.0202 (11) | 0.0286 (13) | 0.0266 (12) | −0.0018 (10) | 0.0104 (10) | 0.0025 (9) |
C2 | 0.0358 (15) | 0.0372 (16) | 0.0524 (17) | 0.0002 (12) | 0.0148 (13) | 0.0047 (12) |
C7 | 0.0292 (13) | 0.0347 (14) | 0.0264 (12) | 0.0010 (11) | 0.0132 (10) | 0.0013 (10) |
C4 | 0.0510 (17) | 0.0524 (18) | 0.0395 (15) | 0.0046 (15) | 0.0262 (14) | −0.0127 (13) |
C1 | 0.0350 (15) | 0.0460 (18) | 0.0587 (19) | 0.0043 (14) | 0.0144 (14) | −0.0056 (14) |
Ni1—O2i | 1.9849 (16) | C3—C5 | 1.507 (3) |
Ni1—O2 | 1.9849 (16) | C3—H3A | 0.96 |
Ni1—O3 | 2.0159 (15) | C3—H3B | 0.96 |
Ni1—O3i | 2.0159 (15) | C3—H3C | 0.96 |
Ni1—O1i | 2.1255 (18) | C10—C9 | 1.321 (3) |
Ni1—O1 | 2.1255 (18) | C10—C4 | 1.487 (4) |
S1—O1 | 1.5211 (17) | C8—C9 | 1.447 (3) |
S1—C2 | 1.775 (3) | C9—H9 | 0.93 |
S1—C1 | 1.780 (3) | C2—H2A | 0.96 |
O5—C10 | 1.371 (3) | C2—H2B | 0.96 |
O5—C7 | 1.398 (3) | C2—H2C | 0.96 |
O2—C8 | 1.262 (3) | C4—H4A | 0.96 |
O3—C5 | 1.250 (3) | C4—H4B | 0.96 |
O4—C7 | 1.215 (3) | C4—H4C | 0.96 |
C6—C8 | 1.440 (3) | C1—H1A | 0.96 |
C6—C7 | 1.441 (3) | C1—H1B | 0.96 |
C6—C5 | 1.443 (3) | C1—H1C | 0.96 |
O2i—Ni1—O2 | 180 | C9—C10—C4 | 127.3 (2) |
O2i—Ni1—O3 | 92.94 (6) | O5—C10—C4 | 111.1 (2) |
O2—Ni1—O3 | 87.06 (6) | O2—C8—C6 | 125.9 (2) |
O2i—Ni1—O3i | 87.06 (6) | O2—C8—C9 | 116.6 (2) |
O2—Ni1—O3i | 92.94 (6) | C6—C8—C9 | 117.4 (2) |
O3—Ni1—O3i | 180.0000 (10) | C10—C9—C8 | 121.6 (2) |
O2i—Ni1—O1i | 89.72 (7) | C10—C9—H9 | 119.2 |
O2—Ni1—O1i | 90.28 (7) | C8—C9—H9 | 119.2 |
O3—Ni1—O1i | 89.31 (7) | O3—C5—C6 | 123.2 (2) |
O3i—Ni1—O1i | 90.69 (7) | O3—C5—C3 | 114.3 (2) |
O2i—Ni1—O1 | 90.28 (7) | C6—C5—C3 | 122.51 (19) |
O2—Ni1—O1 | 89.72 (7) | S1—C2—H2A | 109.5 |
O3—Ni1—O1 | 90.69 (7) | S1—C2—H2B | 109.5 |
O3i—Ni1—O1 | 89.31 (7) | H2A—C2—H2B | 109.5 |
O1i—Ni1—O1 | 180 | S1—C2—H2C | 109.5 |
O1—S1—C2 | 105.60 (12) | H2A—C2—H2C | 109.5 |
O1—S1—C1 | 105.41 (12) | H2B—C2—H2C | 109.5 |
C2—S1—C1 | 97.65 (15) | O4—C7—O5 | 112.9 (2) |
C10—O5—C7 | 121.85 (18) | O4—C7—C6 | 128.7 (2) |
S1—O1—Ni1 | 116.97 (9) | O5—C7—C6 | 118.4 (2) |
C8—O2—Ni1 | 129.32 (15) | C10—C4—H4A | 109.5 |
C5—O3—Ni1 | 131.49 (15) | C10—C4—H4B | 109.5 |
C8—C6—C7 | 118.8 (2) | H4A—C4—H4B | 109.5 |
C8—C6—C5 | 121.45 (19) | C10—C4—H4C | 109.5 |
C7—C6—C5 | 119.74 (19) | H4A—C4—H4C | 109.5 |
C5—C3—H3A | 109.5 | H4B—C4—H4C | 109.5 |
C5—C3—H3B | 109.5 | S1—C1—H1A | 109.5 |
H3A—C3—H3B | 109.5 | S1—C1—H1B | 109.5 |
C5—C3—H3C | 109.5 | H1A—C1—H1B | 109.5 |
H3A—C3—H3C | 109.5 | S1—C1—H1C | 109.5 |
H3B—C3—H3C | 109.5 | H1A—C1—H1C | 109.5 |
C9—C10—O5 | 121.6 (2) | H1B—C1—H1C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4ii | 0.96 | 2.55 | 3.384 (4) | 145 |
C2—H2B···O4ii | 0.96 | 2.53 | 3.370 (4) | 146 |
C2—H2C···O2iii | 0.96 | 2.46 | 3.378 (4) | 160 |
Symmetry codes: (ii) x+1, −y+3/2, z+1/2; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H7O4)2(C2H6OS)2] |
Mr | 549.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.385 (1), 6.2833 (4), 19.7434 (15) |
β (°) | 123.525 (6) |
V (Å3) | 1177.40 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.05 |
Crystal size (mm) | 0.25 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.902, 0.902 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14084, 2628, 1962 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.11 |
No. of reflections | 2628 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.97 |
Computer programs: COLLECT (Nonius, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Ni1—O2i | 1.9849 (16) | Ni1—O3i | 2.0159 (15) |
Ni1—O2 | 1.9849 (16) | Ni1—O1i | 2.1255 (18) |
Ni1—O3 | 2.0159 (15) | Ni1—O1 | 2.1255 (18) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4ii | 0.9600 | 2.5500 | 3.384 (4) | 145.00 |
C2—H2B···O4ii | 0.9600 | 2.5300 | 3.370 (4) | 146.00 |
C2—H2C···O2iii | 0.9600 | 2.4600 | 3.378 (4) | 160.00 |
Symmetry codes: (ii) x+1, −y+3/2, z+1/2; (iii) x, y+1, z. |
Acknowledgements
This work was supported by Université Farhet Abbas de Sétif, Sétif, Algeria.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Arndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Chem. Berichte Teil B, 69, 2373–2380. Google Scholar
Ayer, W. A., Figueroa-Villar, J. D. & Migaj, B. (1988). Can. J. Chem. 66, 506–521. CrossRef CAS Web of Science Google Scholar
Bartels-Keith, J. R. (1960). J. Chem. Soc. pp. 1662–1665. CrossRef Web of Science Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Casabò, J., Marquet, J., Moreno-Manas, M., Prior, M. & Teixidor, F. (1987). Polyhedron, 6, 1235–1238. Google Scholar
Djedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133–m135. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m483–m484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyakado, M., Inoue, S., Tanabe, Y., Watanabe, K., Ohno, N., Yoshioka, H. & Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542. CrossRef Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT and EVAL. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402–404. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, A. A., Hamid, M., Zeller, M., Mazhar, M. & Hunter, A. D. (2007). Acta Cryst. E63, m272–m274. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, S. F. & Ang, K. P. (1988). Transition Met. Chem. 13, 64–68. CrossRef CAS Web of Science Google Scholar
Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45–52. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties (Rao et al., 1978). The importance of similar pyrones as potential fungicides is reinforced by the existence of several natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, such as alternaric acid (Bartels-Keith, 1960), the podoblastins (Miyakado et al., 1982) and lachnelluloic acid (Ayer et al., 1988). Also, it has been shown that the complexes of DHA with copper and with several other transition metal cations are fungistatic (Rao et al., 1978). This has motivated our study of the structural characterization of complexes of dehydroacetic acid. The complex of DHA with nickel was previously reported by Casabò et al. (1987), but their characterization of the compound was based only on thermal and elemental analysis, and on IR and NMR spectroscopy.
We present here the crystal structure determination of the title complex, [Ni(DHA)2.2(DMSO)], (I) (DMSO = dimethylsulfoxide). The nature of the title compound, (I), was established by an X-ray structure determination and is shown in Fig. 1
The Ni atom lies on a crystallographic centre of symmetry with the ligands bonded to nickel in an all-trans fashion. The configuration of the complex molecule is similar to that found in [Zn(DHA)2. 2(DMSO); Cd(DHA)2.2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2. 2(DMSO)] (Djedouani et al., 2006), with (DHA: dehydroacetic acid) and Bis(4,6-dibromo-2-formylphenolato-κ2 O,O')-bis(dimethyl sulfoxide)nickel(II), [Ni(C7H3Br2O2)2(C2H6OS)2] (Zhang et al., 2007).
The coordination polyhedron around the Ni atom is a slightly distorted octahedron (Table 1), with the O atoms of the DMSO groups in axial positions; and the Ni—ODMSO distance is in agreement with literature values: [2.1139 (12) Å - 1.9897 (13) Å (Tahir et al., 2007), 1.998 (3) Å - 2.105 (3) Å (Zhang et al. 2007), 2.030 (2) Å- 2.057 (2)Å (Ma et al., 2003)].
The orientation of the DMSO molecule can be described by the torsion angles O3—Ni—O1—S [43.32 (4) °] and O2—Ni—O1—S [-137.70 (4) °]. The packing of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 2) which form a three-dimensional network (Fig. 2).