organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-2-Benzene­sulfonamido-2-phenyl­ethanoic acid: a new monoclinic polymorph

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 1 September 2009; accepted 7 September 2009; online 12 September 2009)

In the title compound, C14H13NO4S, a sulfonamide derivative of phenyl glycine, the aromatic rings are inclined at a dihedral angle of 28.03 (12)°. In the crystal, O—H⋯O hydrogen bonds link the molecules into chains propagating in [100] and a weak C—H⋯O interaction cross-links the chains in the c-axis direction. In the previously published polymorph, the dihedral angle between the aromatic rings is 45.52 (18)° and the structure is stabilized by three different types of ring motif.

Related literature

For related sulfonamide structures see: Arshad et al. (2008a[Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008a). Acta Cryst. E64, o2380.],b[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o2045.], 2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.31

  • Monoclinic, P 21

  • a = 8.2464 (8) Å

  • b = 5.3251 (4) Å

  • c = 15.3642 (15) Å

  • β = 100.384 (3)°

  • V = 663.64 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.34 × 0.19 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.972

  • 7864 measured reflections

  • 3174 independent reflections

  • 2372 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.01

  • 3174 reflections

  • 187 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 1360 Friedel pairs

  • Flack parameter: −0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.83 (4) 1.98 (4) 2.727 (3) 150 (5)
C4—H4A⋯O3ii 0.93 2.56 3.317 (4) 139
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Flack, H. D. (1983). Acta Cryst. A39, 876-881.][Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Flack, H. D. (1983). Acta Cryst. A39, 876-881.][Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have already reported the crystal structures of sulfonamides (Arshad et al., 2008a, b), (Arshad et al., 2009). In continuation of our studies in this area, we report here a new polymorph of our previously published sulfonamide (Arshad et al., 2009a), derivative (II).

The title compound (I) crystallizes in the monoclinic space group P21. The molecule has a chiral center at C13 with a slightly distorted tetrahedral geometry. The dihedral angles between the two aromatic ring are 28.03 (12)° in (I) and 45.52 (18)° in (II). The crystal structure of I has no complex intermolecular interactions like II. There are only two types of hydrogen bonding interaction of O–H—O making a polymeric chain along the a-axes and C–H—O which linked these polymeric chain along c-axes (Fig. 2 and Table 1).

Related literature top

For related sulfonamide structures see: Arshad et al. (2008a,b, 2009).

Experimental top

Phenyl glycine (2 g, 13.2 mmol) was dissolved in distilled water (15 ml) in a round bottom flask (50 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3 solution. Benzene sulfonyl chloride (2.32 g, 13.2 mmol) was then suspended to the solution, and stirred at room temperature until all the suspension had been disappeared. On completion of the reaction the pH was adjusted 1–2, using 1 M HCl with stirring. The precipitate formed was filtered off, washed with distilled water, dried and recrystalized in methanol.

Refinement top

The H atoms for the C atoms were refined geometrically and treated as riding atoms: C—H = 0.93 for aromatic and C—H = 0.98 for the chiral carbon with Uiso(H) = 1.2Ueq. The N—H and O—H were refined in calculated positions and treated as riding atoms: O—H = 0.83 (4) Å, N—H = 0.82 (3) Å, with Uiso(H) = 1.5Ueq(parent O atom) and = 1.2Ueq(parent N atom)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled molecular structure diagram of the title compound with the 50% probability level of drawn thermal ellipsoids.
[Figure 2] Fig. 2. Unit cell packing diagram showing the intermolecular hydrogen bonding using dashed lines. The hydrogen atoms not involved in hydrogen bonding have been omitted.
(2R)-2-Benzenesulfonamido-2-phenylethanoic acid top
Crystal data top
C14H13NO4SF(000) = 304
Mr = 291.31Dx = 1.458 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1972 reflections
a = 8.2464 (8) Åθ = 2.5–23.4°
b = 5.3251 (4) ŵ = 0.26 mm1
c = 15.3642 (15) ÅT = 296 K
β = 100.384 (3)°Needle, white
V = 663.64 (10) Å30.34 × 0.19 × 0.11 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3174 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1011
Tmin = 0.918, Tmax = 0.972k = 76
7864 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.1295P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3174 reflectionsΔρmax = 0.24 e Å3
187 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1360 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C14H13NO4SV = 663.64 (10) Å3
Mr = 291.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2464 (8) ŵ = 0.26 mm1
b = 5.3251 (4) ÅT = 296 K
c = 15.3642 (15) Å0.34 × 0.19 × 0.11 mm
β = 100.384 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2372 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.972Rint = 0.034
7864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.26 e Å3
3174 reflectionsAbsolute structure: Flack (1983), 1360 Friedel pairs
187 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53130 (7)0.77328 (15)0.29076 (4)0.03965 (18)
O10.5315 (3)1.0355 (4)0.27187 (13)0.0569 (6)
O20.3791 (2)0.6402 (4)0.28841 (13)0.0560 (6)
O30.9213 (3)0.3901 (5)0.25951 (16)0.0728 (7)
O41.0525 (2)0.7469 (6)0.23666 (16)0.0700 (7)
H4O1.137 (5)0.660 (9)0.249 (3)0.105*
N10.6206 (3)0.6352 (5)0.21858 (15)0.0396 (6)
H1N0.615 (4)0.482 (6)0.223 (2)0.047*
C10.6493 (3)0.7278 (5)0.39752 (16)0.0334 (6)
C20.6187 (3)0.5204 (5)0.44644 (19)0.0411 (6)
H20.54060.40200.42220.049*
C30.7045 (3)0.4914 (6)0.53080 (19)0.0448 (7)
H30.68460.35190.56370.054*
C40.8199 (3)0.6657 (6)0.56754 (19)0.0454 (7)
H4A0.87540.64690.62550.054*
C50.8524 (4)0.8670 (6)0.5181 (2)0.0499 (8)
H50.93270.98230.54220.060*
C60.7673 (3)0.9015 (6)0.43262 (18)0.0423 (6)
H60.78931.03930.39950.051*
C70.7556 (3)0.7445 (5)0.09274 (15)0.0334 (5)
C80.6714 (3)0.5591 (6)0.03958 (18)0.0433 (7)
H80.61650.43340.06470.052*
C90.6688 (4)0.5605 (6)0.0501 (2)0.0518 (8)
H90.61310.43410.08520.062*
C100.7472 (4)0.7454 (7)0.08849 (19)0.0540 (8)
H100.74400.74580.14930.065*
C110.8301 (4)0.9294 (7)0.0367 (2)0.0601 (9)
H110.88391.05520.06240.072*
C120.8347 (4)0.9302 (6)0.0532 (2)0.0492 (7)
H120.89151.05660.08770.059*
C130.7667 (3)0.7445 (6)0.19245 (15)0.0360 (6)
H130.77710.91860.21330.043*
C140.9209 (4)0.6019 (6)0.23465 (19)0.0461 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0295 (3)0.0577 (4)0.0306 (3)0.0117 (3)0.0025 (2)0.0032 (4)
O10.0695 (15)0.0584 (14)0.0409 (12)0.0304 (11)0.0050 (10)0.0040 (10)
O20.0254 (9)0.0997 (17)0.0418 (12)0.0027 (10)0.0028 (8)0.0118 (11)
O30.0545 (14)0.0755 (17)0.0822 (18)0.0204 (13)0.0038 (12)0.0157 (14)
O40.0300 (10)0.0916 (18)0.0829 (17)0.0032 (14)0.0042 (10)0.0082 (17)
N10.0373 (12)0.0503 (13)0.0324 (13)0.0042 (11)0.0096 (10)0.0076 (11)
C10.0263 (11)0.0461 (17)0.0274 (12)0.0045 (12)0.0038 (9)0.0056 (12)
C20.0339 (14)0.0466 (16)0.0425 (16)0.0035 (13)0.0058 (12)0.0041 (13)
C30.0458 (16)0.0509 (18)0.0387 (16)0.0017 (14)0.0101 (13)0.0087 (14)
C40.0434 (16)0.0590 (19)0.0317 (15)0.0069 (14)0.0013 (12)0.0001 (14)
C50.0445 (17)0.0542 (18)0.0465 (19)0.0095 (14)0.0036 (14)0.0098 (15)
C60.0412 (14)0.0438 (14)0.0405 (16)0.0008 (14)0.0041 (12)0.0043 (14)
C70.0277 (11)0.0397 (15)0.0324 (12)0.0074 (12)0.0041 (9)0.0005 (13)
C80.0457 (16)0.0482 (16)0.0344 (16)0.0072 (13)0.0034 (13)0.0014 (13)
C90.0510 (18)0.066 (2)0.0370 (17)0.0071 (16)0.0034 (14)0.0084 (16)
C100.0566 (16)0.070 (2)0.0360 (15)0.0064 (19)0.0107 (13)0.0054 (17)
C110.064 (2)0.066 (2)0.056 (2)0.0083 (18)0.0258 (17)0.0109 (18)
C120.0486 (16)0.0516 (18)0.0479 (19)0.0066 (15)0.0100 (14)0.0056 (15)
C130.0289 (11)0.0439 (15)0.0343 (13)0.0034 (13)0.0030 (9)0.0071 (13)
C140.0400 (16)0.065 (2)0.0310 (15)0.0090 (15)0.0002 (12)0.0056 (15)
Geometric parameters (Å, º) top
S1—O11.426 (2)C5—C61.385 (4)
S1—O21.436 (2)C5—H50.9300
S1—N11.615 (2)C6—H60.9300
S1—C11.766 (2)C7—C121.384 (4)
O3—C141.191 (4)C7—C81.385 (4)
O4—C141.328 (4)C7—C131.518 (3)
O4—H4O0.83 (4)C8—C91.375 (4)
N1—C131.458 (3)C8—H80.9300
N1—H1N0.82 (3)C9—C101.368 (4)
C1—C61.380 (4)C9—H90.9300
C1—C21.384 (4)C10—C111.365 (5)
C2—C31.369 (4)C10—H100.9300
C2—H20.9300C11—C121.374 (4)
C3—C41.376 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.368 (4)C13—C141.522 (4)
C4—H4A0.9300C13—H130.9800
O1—S1—O2120.73 (14)C12—C7—C8118.4 (3)
O1—S1—N1106.78 (13)C12—C7—C13119.7 (2)
O2—S1—N1105.24 (13)C8—C7—C13121.9 (2)
O1—S1—C1107.61 (13)C9—C8—C7120.2 (3)
O2—S1—C1106.75 (12)C9—C8—H8119.9
N1—S1—C1109.41 (12)C7—C8—H8119.9
C14—O4—H4O109 (3)C10—C9—C8120.8 (3)
C13—N1—S1120.6 (2)C10—C9—H9119.6
C13—N1—H1N119 (2)C8—C9—H9119.6
S1—N1—H1N111 (2)C11—C10—C9119.4 (3)
C6—C1—C2120.5 (2)C11—C10—H10120.3
C6—C1—S1120.2 (2)C9—C10—H10120.3
C2—C1—S1119.33 (19)C10—C11—C12120.5 (3)
C3—C2—C1119.4 (3)C10—C11—H11119.7
C3—C2—H2120.3C12—C11—H11119.7
C1—C2—H2120.3C11—C12—C7120.6 (3)
C2—C3—C4120.9 (3)C11—C12—H12119.7
C2—C3—H3119.6C7—C12—H12119.7
C4—C3—H3119.6N1—C13—C7112.0 (2)
C5—C4—C3119.4 (3)N1—C13—C14110.6 (2)
C5—C4—H4A120.3C7—C13—C14108.9 (2)
C3—C4—H4A120.3N1—C13—H13108.4
C4—C5—C6120.9 (3)C7—C13—H13108.4
C4—C5—H5119.5C14—C13—H13108.4
C6—C5—H5119.5O3—C14—O4126.0 (3)
C1—C6—C5118.9 (3)O3—C14—C13124.3 (3)
C1—C6—H6120.6O4—C14—C13109.7 (3)
C5—C6—H6120.6
O1—S1—N1—C1340.7 (2)C13—C7—C8—C9177.7 (3)
O2—S1—N1—C13170.1 (2)C7—C8—C9—C100.8 (5)
C1—S1—N1—C1375.5 (2)C8—C9—C10—C110.6 (5)
O1—S1—C1—C623.6 (2)C9—C10—C11—C120.2 (5)
O2—S1—C1—C6154.5 (2)C10—C11—C12—C70.1 (5)
N1—S1—C1—C692.1 (2)C8—C7—C12—C110.2 (4)
O1—S1—C1—C2154.5 (2)C13—C7—C12—C11178.1 (3)
O2—S1—C1—C223.6 (2)S1—N1—C13—C7133.6 (2)
N1—S1—C1—C289.8 (2)S1—N1—C13—C14104.7 (2)
C6—C1—C2—C31.2 (4)C12—C7—C13—N1150.2 (2)
S1—C1—C2—C3176.9 (2)C8—C7—C13—N131.6 (4)
C1—C2—C3—C40.3 (4)C12—C7—C13—C1487.1 (3)
C2—C3—C4—C51.8 (4)C8—C7—C13—C1491.1 (3)
C3—C4—C5—C61.9 (5)N1—C13—C14—O323.4 (4)
C2—C1—C6—C51.1 (4)C7—C13—C14—O3100.1 (3)
S1—C1—C6—C5177.0 (2)N1—C13—C14—O4158.5 (2)
C4—C5—C6—C10.5 (4)C7—C13—C14—O478.0 (3)
C12—C7—C8—C90.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.83 (4)1.98 (4)2.727 (3)150 (5)
C4—H4A···O3ii0.932.563.317 (4)139
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO4S
Mr291.31
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.2464 (8), 5.3251 (4), 15.3642 (15)
β (°) 100.384 (3)
V3)663.64 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.34 × 0.19 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.918, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
7864, 3174, 2372
Rint0.034
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.01
No. of reflections3174
No. of parameters187
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26
Absolute structureFlack (1983), 1360 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.83 (4)1.98 (4)2.727 (3)150 (5)
C4—H4A···O3ii0.93002.56003.317 (4)139.00
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under the Indig­enous 5000 PhD fellowship program (PIN 042-120607-PS2-183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008a). Acta Cryst. E64, o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds