metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1256-m1257

Hexa­kis­(1H-imidazole-κN3)cobalt(III) tris­­(hexa­fluoridophosphate) hexa­hydrate

aFaculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland, and bDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: lianger@sun.ac.za

(Received 23 September 2009; accepted 24 September 2009; online 30 September 2009)

In the crystal structure of the title compound, [Co(C3H4N2)6](PF6)3·6H2O, the CoIII atom lies on a special position with site-symmetry [\overline{3}] and the P atom is located on a special position with site symmetry [\overline{1}]. The CoIII atom has an almost ideal octa­hedral coordination formed by the N atoms of six imidazole ligands. The water mol­ecules form hydrogen-bonded helical chains propagating in [001] by O—H⋯O inter­actions with a distance of 2.913 (2) Å. They simultaneously inter­act as hydrogen-bond acceptors and donors with the cations and anions, respectively, resulting in the formation of a three-dimensional assembly. Weak C—H⋯F inter­actions further stabilize the crystal structure.

Related literature

For CoIII complexes with heterocycles, see: Wojtczak et al. (1990[Wojtczak, A., Kosturkiewicz, Z. & Surdykowski, A. (1990). Acta Cryst. C46, 578-581.]); Pazderski et al. (2008[Pazderski, L., Surdykowski, A., Pazderska-Szablowicz, M., Sitkowski, J., Kozerski, L., Kamieński, B. & Szłyk, E. (2008). Cent. Eur. J. Chem. 6, 55-64.]). For the hexa­kis(imidazole)-cobalt(III) ion in solution, see: Navon & Panigel (1989[Navon, G. & Panigel, R. (1989). Inorg. Chem. 28, 1405-1407.]); Wiśniewska & Kita (2006[Wiśniewska, J. & Kita, P. (2006). Transition Met. Chem. 31, 232-236.]). For Co—N bond distances in hexa­kis(imidazole)-cobalt(II) complexes, see: Tong et al. (2002[Tong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186-m188.]). For CoIII—N and CoII—N bond lengths in hexa­ammine–cobalt complexes, see: Kime & Ibers (1969[Kime, N. E. & Ibers, J. A. (1969). Acta Cryst. B25, 168-169.]). The water mol­ecules present in the crystal structure form helical chains similar to those observed in a trichloro­phloroglucinol structure, see: Saha & Nangia (2005[Saha, B. K. & Nangia, A. (2005). Chem. Commun. 24, 3024-3026.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C3H4N2)6](PF6)3·6H2O

  • Mr = 1010.43

  • Trigonal, [R \overline 3]

  • a = 20.9911 (13) Å

  • c = 7.0156 (9) Å

  • V = 2677.1 (4) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.832, Tmax = 0.856

  • 4893 measured reflections

  • 1373 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.08

  • 1373 reflections

  • 98 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H6⋯O1i 0.96 (3) 1.98 (3) 2.913 (2) 163 (3)
N3—H3⋯O1 0.88 1.98 2.834 (2) 165
O1—H7⋯F3ii 0.96 (3) 2.10 (3) 2.945 (2) 146 (2)
C2—H2⋯F3iii 0.95 2.34 3.042 (2) 131
C4—H4⋯F1iv 0.95 2.40 3.303 (2) 158
Symmetry codes: (i) [-y+{\script{2\over 3}}, x-y+{\script{1\over 3}}, z+{\script{1\over 3}}]; (ii) x-y, x, -z+1; (iii) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (iv) [-x+y+{\script{1\over 3}}, -x+{\script{2\over 3}}, z+{\script{2\over 3}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the course of ongoing studies on CoIII complexes with heterocycles (Wojtczak et al., 1990; Pazderski et al., 2008) the title compound (I) was isolated. The crystal structure of (I) is built of mononuclear [Co(imidazole)6]3+ trications with the Co1 atom lying on Wyckoff position 3a (site symmetry 3), PF6- anions with P atom lying on Wyckoff position 9 d (site symmetry 1) and lattice water molecules (Fig.1). It is worth mentioning that this is the first structure consisting of a hexakis(imidazole)-cobalt(III) cationic complex, whereas more than 15 structures consisting of a hexakis(imidazole)-cobalt(II) complex ion were reported. Furthermore, there are only two papers on the hexakis(imidazole)-cobalt(III) ion in solution, describing spectroscopic (Navon & Panigel, 1989) and kinetic properties (Wiśniewska & Kita, 2006) respectively. The CoIII ion has an almost ideal octahedral environment formed by six imidazole N atoms, with cis-N—Co—N angles of 88.68 (7)° and 91.32 (7)°. The planes of neighbouring imidazole rings are twisted from their usual perpendicular positions. This is the result of the extensive net of hydrogen bonds in the structure in which imidazole rings are involved (dihedral angle = 72.4 (6)°). The Co—N bond distance is equal to 1.961 (1) Å and as expected is slightly shorter than those reported for hexakis(imidazole)-cobalt(II) complexes with distances of 2.140±2.188 Å (Tong et al., 2002). A similar relation of bond lengths was reported for CoIII—N and Co(II)—N in hexaamminecobalt complexes (Kime & Ibers, 1969) with differences between those distances of 0.18 Å. The water molecules present in the crystal structure form helical chains (helix pitch = 7.016 (2) Å, c axis) similar to those observed in a trichlorophloroglucinol structure (Saha & Nangia, 2005). They are propagated in [001] directions by O1—H6···O1i interactions (symmetry operation: -y + 2/3, x-y + 1/3, z + 1/3) with a distance of 2.913 (2) Å), which are stabilized by hydrogen bonding with the remaining molecular units (Table 1) giving in turn a three-dimensional assembly. The weak C—H···F interactions (Table 1) further stabilize the packing arrangement (Fig. 2).

Related literature top

For CoIII complexes with heterocycles, see: Wojtczak et al. (1990); Pazderski et al. (2008). For the hexakis(imidazole)-cobalt(III) ion in solution, see: Navon & Panigel (1989); Wiśniewska & Kita (2006). For Co—N bond distances in hexakis(imidazole)-cobalt(II) complexes, see: Tong et al. (2002). For CoIII—N and Co(II)—N bond lengths in hexaammine–cobalt complexes, see: Kime & Ibers (1969). The water molecules present in the crystal structure form helical chains similar to those observed in a trichlorophloroglucinol structure, see: Saha & Nangia (2005).

Experimental top

A mixture of 11.84 g (174 mmol) of imidazole and 2.02 g (5 mmol) of Co(pyridine)3Cl3 was grinded for several minutes until the color changed from green to red. The mixture was subsequently dissolved in 100 ml of distilled water and the pH was adjusted to 2–3 by adding 3 M HCl. Then the mixture was diluted with water to a final volume of 2 l and passed through a Sephadex SP C-25 column starting with an aqueous 0.05 M HCl solution as eluent. The fraction obtained by using 0.2 M HCl was evaporated in a stream of cold air and the product [Co(imidazole)6]Cl3 was filtrated and washed with ethanol. 10 mg of this compound was placed in a 50 ml beaker and 20 ml of a saturated aqueous solution of NH4PF6 was added. Red crystals suitable for single-crystal X-ray analysis were obtained by slow evaporation.

Refinement top

Water H atoms were located in a difference map and refined with a restrained O—H distance of 0.96 (3) Å, whereas Uiso(H) values were allowed to refine independently. The remaining H atoms were positioned geometrically, with C—H = 0.95 Å and N—H = 0.88 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme [symmetry codes:(i) y,-x + y,-z; (ii) -x + y, -x, z; (iii) -x, -y, -z; (iv) -y, x-y, z; (v) x-y, x, -z; (vi) -x + 2/3,-y + 1/3,-z + 1/3]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down [001] with the extensive net of hydrogen bonds leading to a three-dimensional arrangement (the red dashed lines indicate strong hydrogen bonding and the blue weak ones).
Hexakis(1H-imidazole-κN3)cobalt(III) tris(hexafluoridophosphate) hexahydrate top
Crystal data top
[Co(C3H4N2)6](PF6)3·6H2ODx = 1.880 Mg m3
Mr = 1010.43Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 3782 reflections
Hall symbol: -R 3θ = 3.1–28.2°
a = 20.9911 (13) ŵ = 0.77 mm1
c = 7.0156 (9) ÅT = 100 K
V = 2677.1 (4) Å3Block, red
Z = 30.25 × 0.25 × 0.21 mm
F(000) = 1530
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1373 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2227
Tmin = 0.832, Tmax = 0.856k = 2626
4893 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0444P)2 + 4.9022P]
where P = (Fo2 + 2Fc2)/3
1373 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.54 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C3H4N2)6](PF6)3·6H2OZ = 3
Mr = 1010.43Mo Kα radiation
Trigonal, R3µ = 0.77 mm1
a = 20.9911 (13) ÅT = 100 K
c = 7.0156 (9) Å0.25 × 0.25 × 0.21 mm
V = 2677.1 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1288 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.856Rint = 0.026
4893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.54 e Å3
1373 reflectionsΔρmin = 0.31 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.01001 (15)
F20.25776 (5)0.09189 (5)0.20301 (16)0.0242 (3)
N10.05651 (7)0.08788 (7)0.15758 (19)0.0126 (3)
N30.14686 (7)0.19255 (7)0.2646 (2)0.0161 (3)
H30.19140.23020.28120.019*
C50.02873 (8)0.11667 (8)0.2899 (2)0.0155 (3)
H50.02130.09450.32850.019*
C20.12841 (8)0.13594 (8)0.1462 (2)0.0150 (3)
H20.16180.13070.06530.018*
C40.08453 (9)0.18177 (8)0.3556 (2)0.0171 (3)
H40.08100.21340.44640.020*
P10.33330.16670.16670.01496 (16)
F10.34563 (7)0.13360 (7)0.02524 (19)0.0421 (4)
F30.37650 (6)0.13458 (7)0.2841 (2)0.0402 (4)
O10.27980 (6)0.31811 (6)0.37976 (18)0.0203 (3)
H60.3046 (15)0.3048 (15)0.473 (4)0.052 (8)*
H70.2625 (15)0.3462 (14)0.447 (4)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00877 (17)0.00877 (17)0.0125 (3)0.00438 (9)0.0000.000
F20.0135 (4)0.0191 (5)0.0324 (6)0.0026 (4)0.0030 (4)0.0038 (4)
N10.0126 (6)0.0113 (6)0.0144 (6)0.0063 (5)0.0004 (5)0.0004 (5)
N30.0148 (6)0.0122 (6)0.0179 (7)0.0041 (5)0.0023 (5)0.0005 (5)
C50.0158 (7)0.0158 (7)0.0158 (8)0.0085 (6)0.0001 (5)0.0015 (6)
C20.0137 (7)0.0137 (7)0.0171 (7)0.0063 (6)0.0016 (5)0.0009 (5)
C40.0205 (8)0.0153 (7)0.0161 (8)0.0095 (6)0.0020 (6)0.0023 (6)
P10.0104 (3)0.0156 (3)0.0172 (3)0.0052 (2)0.00177 (19)0.0010 (2)
F10.0372 (7)0.0354 (7)0.0378 (7)0.0062 (5)0.0167 (5)0.0130 (5)
F30.0160 (5)0.0422 (7)0.0588 (9)0.0118 (5)0.0027 (5)0.0283 (6)
O10.0192 (6)0.0197 (6)0.0207 (6)0.0086 (5)0.0039 (5)0.0035 (5)
Geometric parameters (Å, º) top
Co1—N11.9605 (13)C5—C41.361 (2)
Co1—N1i1.9605 (13)C5—H50.9500
Co1—N1ii1.9605 (13)C2—H20.9500
Co1—N1iii1.9605 (13)C4—H40.9500
Co1—N1iv1.9605 (13)P1—F1vi1.5939 (12)
Co1—N1v1.9605 (13)P1—F11.5938 (12)
F2—P11.5985 (9)P1—F2vi1.5985 (9)
N1—C21.3340 (19)P1—F3vi1.6012 (11)
N1—C51.3854 (19)P1—F31.6012 (11)
N3—C21.339 (2)O1—H60.96 (3)
N3—C41.369 (2)O1—H70.96 (3)
N3—H30.8800
N1—Co1—N1i88.68 (5)N1—C5—H5125.5
N1—Co1—N1ii91.32 (5)N1—C2—N3110.48 (14)
N1—Co1—N1v88.68 (5)N1—C2—H2124.8
N1—Co1—N1iii180.00 (9)N3—C2—H2124.8
N1v—Co1—N1iii91.32 (5)C5—C4—N3106.26 (14)
N1v—Co1—N1i91.32 (5)C5—C4—H4126.9
N1iii—Co1—N1i91.32 (5)N3—C4—H4126.9
N1v—Co1—N1ii180.00 (9)F1vi—P1—F1180.0
N1iii—Co1—N1ii88.68 (5)F1vi—P1—F289.75 (6)
N1i—Co1—N1ii88.68 (5)F1—P1—F290.25 (6)
N1—Co1—N1iv91.32 (5)F1vi—P1—F2vi90.25 (6)
N1v—Co1—N1iv88.68 (5)F1—P1—F2vi89.75 (6)
N1iii—Co1—N1iv88.68 (5)F2—P1—F2vi179.997 (1)
N1i—Co1—N1iv180.00 (5)F1vi—P1—F3vi90.13 (8)
N1ii—Co1—N1iv91.32 (5)F1—P1—F3vi89.86 (8)
C2—N1—C5105.91 (12)F2—P1—F3vi90.15 (6)
C2—N1—Co1126.96 (11)F2vi—P1—F3vi89.85 (6)
C5—N1—Co1126.84 (10)F1vi—P1—F389.86 (8)
C2—N3—C4108.30 (13)F1—P1—F390.14 (8)
C2—N3—H3125.8F2—P1—F389.85 (6)
C4—N3—H3125.8F2vi—P1—F390.15 (6)
C4—C5—N1109.04 (14)F3vi—P1—F3180.0
C4—C5—H5125.5H6—O1—H7105.7 (19)
N1v—Co1—N1—C298.46 (15)C2—N1—C5—C40.10 (17)
N1i—Co1—N1—C27.11 (13)Co1—N1—C5—C4174.02 (11)
N1ii—Co1—N1—C281.54 (15)C5—N1—C2—N30.45 (17)
N1iv—Co1—N1—C2172.89 (13)Co1—N1—C2—N3174.56 (10)
N1v—Co1—N1—C574.46 (10)C4—N3—C2—N10.82 (18)
N1i—Co1—N1—C5165.81 (14)N1—C5—C4—N30.58 (18)
N1ii—Co1—N1—C5105.54 (10)C2—N3—C4—C50.85 (18)
N1iv—Co1—N1—C514.19 (14)
Symmetry codes: (i) y, x+y, z; (ii) x+y, x, z; (iii) x, y, z; (iv) y, xy, z; (v) xy, x, z; (vi) x+2/3, y+1/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H6···O1vii0.96 (3)1.98 (3)2.913 (2)163 (3)
N3—H3···O10.881.982.834 (2)165
O1—H7···F3viii0.96 (3)2.10 (3)2.945 (2)146 (2)
C2—H2···F3vi0.952.343.042 (2)131
C4—H4···F1ix0.952.403.303 (2)158
Symmetry codes: (vi) x+2/3, y+1/3, z+1/3; (vii) y+2/3, xy+1/3, z+1/3; (viii) xy, x, z+1; (ix) x+y+1/3, x+2/3, z+2/3.

Experimental details

Crystal data
Chemical formula[Co(C3H4N2)6](PF6)3·6H2O
Mr1010.43
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)20.9911 (13), 7.0156 (9)
V3)2677.1 (4)
Z3
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.25 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.832, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
4893, 1373, 1288
Rint0.026
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.08
No. of reflections1373
No. of parameters98
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H6···O1i0.96 (3)1.98 (3)2.913 (2)163 (3)
N3—H3···O10.881.9752.834 (2)165
O1—H7···F3ii0.96 (3)2.10 (3)2.945 (2)146 (2)
C2—H2···F3iii0.952.343.042 (2)131
C4—H4···F1iv0.952.403.303 (2)158
Symmetry codes: (i) y+2/3, xy+1/3, z+1/3; (ii) xy, x, z+1; (iii) x+2/3, y+1/3, z+1/3; (iv) x+y+1/3, x+2/3, z+2/3.
 

Acknowledgements

The authors wish to thank the Nicolaus Copernicus University and the National Research Foundation of South Africa for financial support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKime, N. E. & Ibers, J. A. (1969). Acta Cryst. B25, 168–169.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNavon, G. & Panigel, R. (1989). Inorg. Chem. 28, 1405–1407.  CrossRef CAS Web of Science Google Scholar
First citationPazderski, L., Surdykowski, A., Pazderska-Szablowicz, M., Sitkowski, J., Kozerski, L., Kamieński, B. & Szłyk, E. (2008). Cent. Eur. J. Chem. 6, 55–64.  Web of Science CrossRef CAS Google Scholar
First citationSaha, B. K. & Nangia, A. (2005). Chem. Commun. 24, 3024–3026.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWiśniewska, J. & Kita, P. (2006). Transition Met. Chem. 31, 232–236.  Google Scholar
First citationWojtczak, A., Kosturkiewicz, Z. & Surdykowski, A. (1990). Acta Cryst. C46, 578–581.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1256-m1257
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds