metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1181-m1182

catena-Poly[[di­aqua­(1,2,3-benzo­thia­diazole-7-carboxyl­ato-κO)copper(II)]-μ-1,2,3-benzo­thia­diazole-7-carboxyl­ato-κ2N2:O]

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: hsxyzgy@mail.tjnu.edu.cn

(Received 12 July 2009; accepted 13 August 2009; online 9 September 2009)

In the polymeric title complex, [Cu(C7H3N2O2S)2(H2O)2]n, the CuII centre is surrounded by three 1,2,3-benzothia­diazole-7-carboxyl­ate and two water mol­ecules. A 1,2,3-benzothia­diazole-7-carboxyl­ate ligand bridges two CuII centres, with a Cu⋯Cu distance of 9.006 (2) Å. The four O atoms in the equatorial planes around each CuII centre form a distorted square-planar arrangement, while the distorted square-pyramidal coordination is completed by the symmetry-related N atoms of the bridging 1,2,3-benzothia­diazole-7-carboxyl­ate ligands. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Related literature

For general background, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Hou et al. (2004[Hou, Y., Wang, S.-T., Shen, E.-H., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Xu, L. & Hu, C.-W. (2004). Inorg. Chim. Acta, 357, 3155-3161.]); Lan et al. (2009[Lan, A. J., Li, K.-H., Wu, H.-H., Olson, D. H., Emge, T. J., Ki, W., Hong, M.-C. & Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334-2338.]); Wang et al. (2008[Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Nature (London), 453, 207-211.]). For related structures, see: Batzel & Boese (1981[Batzel, V. & Boese, R. (1981). Z. Naturforsh. Teil B, 36, 172-179.]); Fan et al. (2005[Fan, Z.-J., Liu, F.-L. & Liu, X.-F. (2005). Chin. Patent CN1 680 342A.]); Lukashuk et al. (2007[Lukashuk, L. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2007). Acta Cryst. C63, m140-m143.]); Qin et al. (2009[Qin, J.-H., Wang, J.-G. & Hu, P.-Z. (2009). Acta Cryst. E65, m349-m350.]); Richardson & Steel (2002[Richardson, C. & Steel, P. J. (2002). Aust. J. Chem. 55, 783-788.]); Walter & Beat (1997[Walter, K. & Beat, J. (1997). Eur. Patent EP 0 780 372 A2.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3N2O2S)2(H2O)2]

  • Mr = 457.95

  • Triclinic, [P \overline 1]

  • a = 9.0061 (18) Å

  • b = 9.4989 (19) Å

  • c = 11.274 (2) Å

  • α = 86.62 (3)°

  • β = 70.00 (3)°

  • γ = 76.69 (3)°

  • V = 881.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 294 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 0.712

  • 7632 measured reflections

  • 3089 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.08

  • 3089 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O4i 1.9405 (19)
Cu1—O1 1.945 (2)
Cu1—O1W 1.991 (2)
Cu1—O2W 1.980 (2)
Cu1—N4 2.311 (2)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1wA⋯N3ii 0.85 2.02 2.859 (4) 169
O1w—H1wB⋯N1iii 0.85 2.12 2.957 (4) 170
O2w—H2wA⋯O3iv 0.85 1.84 2.680 (3) 172
O2w—H2wB⋯O2v 0.85 1.84 2.684 (3) 172
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+2; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and syntheses of supramolecular complexes exhibiting novel structures and their properties have provided exciting new prospects for chemists (Wang et al., 2008). To date, a number of monometallic extended inorganic-organic composite materials have been synthesized by the combination of organic spacers and inorganic metal salts (Lan et al., 2009). The rational design and construction of complexes greatly depend on the judicious selection of the organic ligands and proper choice of metal centers. Among various ligands, the versatile carboxylic acid ligands exhibiting diverse coordination modes, have been well used in the preparations of various metal-organic complexes, which exhibit interesting applications as functional materials (Hou et al., 2004). 1,2,3-Benzothiadiazole-7-carboxylic acid (HL) known as a disease-resistance activator of plant is a versatile carboxylic acid ligand containing N and S donors for the following reasons: (1) HL has a group –COOH and a thiadiazole ring, in which the O, N and S atoms all could coordinate to metal ions. So HL can act as a bridging ligand. (2) The large conjugated π system of benzothiadiazole ring may act as the directing group for π···π stacking and C—H···π interactions. (3) Both N and O atoms in HL being typical electron donor in forming hydrogen bond, therefore may construct H-bonded supramolecular framework. However, up to now, HL has been largely ignored by coordination chemists and it has not been used for the preparation of metal complexes. We report herein the preparation and crystal structure of the title complex.

In the polymeric title complex, each Cu atom is surrounded by three 1,2,3-benzo- thiadiazole-7-carboxylate and two water molecules. A 1,2,3-benzothiadiazole-7 -carboxylate ligand bridges the two Cu atoms (Fig. 1) with a Cu···Cu distance of 9.006 (2) Å. The four O atoms (O1, O1W, O2W and O4i) [symmetry code (i): x - 1, y, z] in the equatorial planes around each Cu atom form a distorted square-planar arrangement, while the distorted square-pyramidal coordination is completed by the symmetry related N atoms of the bridging 1,2,3-benzothiadiazole -7-carboxylate ligands (Fig. 2).

In general, several parameters are often used to define the coordination geometries of the penta-coordinated metal centers, and one of the most common parameters is the τ factor defined by Addison et al. (τ = 0 for perfect square-pyramid environment and τ = 1 for trigonal bipyramidal geometry) (Addison et al., 1984). For the title compound, the calculated τ value is 0.173, which corresponds to an approximately square-pyramidal coordination environment.

The Cu-O and Cu-N bonds (Table 1) are in good agreement with the coreesponding values reported for Cu-carboxylate, [Cu(H2O)2], and Cu-thiadiazole complexes (Lukashuk et al., 2007; Qin et al., 2009). To the best of our knowledge, there is no report on the crystal structures of metal complexes of 1,2,3-thiadiazole, except of a molybdenum pentacarbonyl complex of 4-phenyl-1,2,3-thiadiazole (Batzel & Boese, 1981) and a silver tetrafluoroborate complex of 2-(1,2,3-thiadiazol-4-yl)pyridine (Richardson & Steel, 2002).

In the crystal structure, strong intermolecular O-H···O and O-H···N hydrogen bonds (Table 2) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Addison et al. (1984); Hou et al. (2004); Lan et al. (2009); Wang et al. (2008). For related structures, see: Batzel & Boese (1981); Fan et al. (2005); Lukashuk et al. (2007); Qin et al. (2009); Richardson & Steel (2002); Walter & Beat (1997).

Experimental top

1,2,3-Benzothiadiazole-7-carboxylic acid (HL) was prepared according to the method of Fan et al. (2005) and Walter & Beat (1997). For the preparation of the title complex, a mixture of cupric nitrate (0.233 g, 1 mmol), HL (0.090 g, 0.5 mmol), sodium azide (0.065 g, 1 mmol) and water (12 ml) were placed in a Teflon reactor (23 ml), which was heated to 413 K for 2 d, and then cooled to room temperature at a rate of 5 K h-1. The crystals obtained were washed with water and dried in air (yield; 0.034 g, 30%).

Refinement top

H atoms were positioned geometrically with O-H = 0.85 Å (for H2O) and C-H = 0.93 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) x - 1 , y, z].
[Figure 2] Fig. 2. A partial packing diagram.
catena-Poly[[diaqua(1,2,3-benzothiadiazole-7-carboxylato- κO)copper(II)]-µ-1,2,3-benzothiadiazole-7-carboxylato- κ2N2:O] top
Crystal data top
[Cu(C7H3N2O2S)2(H2O)2]Z = 2
Mr = 457.95F(000) = 462
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0061 (18) ÅCell parameters from 8567 reflections
b = 9.4989 (19) Åθ = 3.0–27.5°
c = 11.274 (2) ŵ = 1.52 mm1
α = 86.62 (3)°T = 294 K
β = 70.00 (3)°Block, green
γ = 76.69 (3)°0.28 × 0.26 × 0.24 mm
V = 881.8 (4) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.676, Tmax = 0.712k = 1111
7632 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.8111P]
where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C7H3N2O2S)2(H2O)2]γ = 76.69 (3)°
Mr = 457.95V = 881.8 (4) Å3
Triclinic, P1Z = 2
a = 9.0061 (18) ÅMo Kα radiation
b = 9.4989 (19) ŵ = 1.52 mm1
c = 11.274 (2) ÅT = 294 K
α = 86.62 (3)°0.28 × 0.26 × 0.24 mm
β = 70.00 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2767 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.712Rint = 0.027
7632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.08Δρmax = 0.72 e Å3
3089 reflectionsΔρmin = 0.70 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07536 (4)0.21613 (4)0.52609 (3)0.03039 (13)
S10.01189 (13)0.19206 (11)0.93629 (9)0.0624 (3)
S20.46168 (8)0.25680 (7)0.48652 (7)0.02732 (17)
O10.1924 (2)0.1114 (2)0.6325 (2)0.0383 (5)
O20.0035 (3)0.0020 (3)0.7417 (2)0.0503 (6)
O30.7573 (2)0.2143 (2)0.5117 (2)0.0394 (5)
O40.9626 (2)0.3236 (2)0.41845 (19)0.0342 (5)
O1W0.0550 (3)0.3574 (2)0.6674 (2)0.0419 (5)
H1WA0.12230.42950.65350.050*
H1WB0.08400.32760.74260.050*
O2W0.1701 (2)0.0527 (2)0.4022 (2)0.0392 (5)
H2WA0.19110.02810.43640.047*
H2WB0.11690.04450.35460.047*
N10.1677 (6)0.2901 (4)1.0612 (3)0.0790 (12)
N20.0307 (6)0.2940 (4)1.0531 (3)0.0850 (13)
N30.3144 (3)0.4182 (3)0.3579 (2)0.0317 (6)
N40.2960 (3)0.3209 (3)0.4435 (2)0.0297 (5)
C10.1326 (4)0.0272 (3)0.7175 (3)0.0338 (7)
C20.2317 (4)0.0441 (3)0.7958 (3)0.0325 (7)
C30.3828 (4)0.0218 (4)0.7812 (3)0.0449 (8)
H30.42790.03960.71890.054*
C40.4696 (5)0.0901 (5)0.8587 (4)0.0679 (12)
H40.57230.07490.84610.081*
C50.4045 (7)0.1796 (5)0.9534 (4)0.0801 (14)
H50.46150.22311.00580.096*
C60.2523 (6)0.2038 (4)0.9695 (3)0.0589 (11)
C70.1684 (4)0.1379 (3)0.8911 (3)0.0417 (8)
C80.8229 (3)0.3009 (3)0.4353 (3)0.0280 (6)
C90.7259 (3)0.3865 (3)0.3602 (3)0.0248 (6)
C100.7796 (3)0.4848 (3)0.2697 (3)0.0324 (7)
H100.88370.49940.25160.039*
C110.6799 (4)0.5634 (4)0.2040 (3)0.0417 (8)
H110.72010.62790.14270.050*
C120.5250 (4)0.5467 (4)0.2289 (3)0.0408 (8)
H120.45960.59990.18610.049*
C130.4677 (3)0.4475 (3)0.3204 (3)0.0290 (6)
C140.5674 (3)0.3674 (3)0.3842 (2)0.0235 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0250 (2)0.0314 (2)0.0390 (2)0.00883 (15)0.01637 (16)0.01192 (16)
S10.0723 (7)0.0527 (6)0.0441 (5)0.0254 (5)0.0109 (5)0.0026 (4)
S20.0229 (4)0.0284 (4)0.0320 (4)0.0074 (3)0.0111 (3)0.0081 (3)
O10.0362 (12)0.0411 (12)0.0418 (12)0.0105 (10)0.0200 (10)0.0181 (10)
O20.0419 (14)0.0670 (16)0.0460 (14)0.0204 (12)0.0153 (11)0.0068 (12)
O30.0299 (11)0.0369 (12)0.0539 (14)0.0090 (9)0.0190 (10)0.0187 (11)
O40.0251 (10)0.0385 (11)0.0447 (12)0.0079 (9)0.0196 (9)0.0095 (10)
O1W0.0441 (13)0.0423 (12)0.0357 (12)0.0003 (10)0.0170 (10)0.0092 (10)
O2W0.0419 (12)0.0311 (11)0.0498 (13)0.0092 (9)0.0229 (11)0.0104 (10)
N10.144 (4)0.056 (2)0.0344 (18)0.032 (3)0.024 (2)0.0204 (16)
N20.134 (4)0.064 (2)0.0390 (19)0.038 (3)0.002 (2)0.0074 (17)
N30.0251 (12)0.0383 (14)0.0354 (14)0.0095 (11)0.0147 (11)0.0091 (11)
N40.0234 (12)0.0335 (13)0.0339 (13)0.0091 (10)0.0111 (11)0.0071 (11)
C10.0348 (17)0.0346 (16)0.0311 (16)0.0053 (14)0.0110 (14)0.0020 (13)
C20.0415 (18)0.0295 (15)0.0229 (14)0.0044 (13)0.0087 (13)0.0009 (12)
C30.052 (2)0.047 (2)0.0402 (19)0.0129 (16)0.0223 (17)0.0093 (16)
C40.070 (3)0.079 (3)0.073 (3)0.018 (2)0.050 (2)0.014 (2)
C50.122 (4)0.073 (3)0.066 (3)0.020 (3)0.065 (3)0.031 (2)
C60.098 (3)0.046 (2)0.0348 (19)0.015 (2)0.027 (2)0.0093 (17)
C70.060 (2)0.0334 (16)0.0248 (15)0.0096 (15)0.0057 (15)0.0015 (13)
C80.0238 (14)0.0255 (14)0.0340 (16)0.0019 (12)0.0108 (12)0.0004 (12)
C90.0224 (14)0.0237 (14)0.0277 (14)0.0036 (11)0.0083 (12)0.0030 (11)
C100.0263 (15)0.0358 (16)0.0359 (16)0.0114 (13)0.0092 (13)0.0048 (13)
C110.0410 (18)0.0477 (19)0.0409 (18)0.0204 (15)0.0159 (15)0.0224 (16)
C120.0376 (18)0.0481 (19)0.0421 (18)0.0128 (15)0.0215 (15)0.0221 (15)
C130.0240 (14)0.0338 (15)0.0323 (15)0.0083 (12)0.0132 (13)0.0060 (13)
C140.0232 (14)0.0232 (13)0.0234 (13)0.0047 (11)0.0075 (11)0.0003 (11)
Geometric parameters (Å, º) top
Cu1—O4i1.9405 (19)C4—H40.9300
Cu1—O11.945 (2)C5—C61.391 (6)
Cu1—O1W1.991 (2)C5—H50.9300
Cu1—O2W1.980 (2)C6—C71.385 (5)
Cu1—N42.311 (2)C6—N11.404 (5)
O1W—H1WA0.8500C7—S11.717 (4)
O1W—H1WB0.8500C8—O31.249 (3)
O2W—H2WA0.8500C8—O41.273 (3)
O2W—H2WB0.8500C8—C91.497 (4)
N1—N21.277 (6)C9—C101.380 (4)
N2—S11.686 (4)C9—C141.412 (4)
N3—N41.292 (3)C10—C111.412 (4)
N4—S21.695 (2)C10—H100.9300
C1—O21.254 (4)C11—C121.371 (4)
C1—O11.265 (4)C11—H110.9300
C1—C21.493 (4)C12—C131.401 (4)
C2—C31.378 (4)C12—H120.9300
C2—C71.405 (4)C13—N31.388 (3)
C3—C41.400 (5)C13—C141.402 (4)
C3—H30.9300C14—S21.706 (3)
C4—C51.379 (6)
O4i—Cu1—O1178.57 (8)C4—C3—H3119.5
O4i—Cu1—O2W90.50 (9)C5—C4—C3120.7 (4)
O1—Cu1—O2W89.78 (9)C5—C4—H4119.7
O4i—Cu1—O1W90.40 (9)C3—C4—H4119.7
O1—Cu1—O1W89.61 (9)C4—C5—C6119.1 (4)
O2W—Cu1—O1W168.13 (9)C4—C5—H5120.5
O4i—Cu1—N493.41 (8)C6—C5—H5120.5
O1—Cu1—N485.18 (8)C7—C6—C5119.9 (3)
O2W—Cu1—N493.52 (9)C7—C6—N1113.5 (4)
O1W—Cu1—N498.24 (9)C5—C6—N1126.7 (4)
N2—S1—C792.6 (2)C6—C7—C2121.7 (3)
N4—S2—C1491.77 (12)C6—C7—S1107.5 (3)
C1—O1—Cu1122.34 (19)C2—C7—S1130.8 (3)
C8—O4—Cu1ii115.52 (18)O3—C8—O4125.5 (3)
Cu1—O1W—H1WA118.0O3—C8—C9116.4 (2)
Cu1—O1W—H1WB119.4O4—C8—C9118.1 (2)
H1WA—O1W—H1WB114.1C10—C9—C14117.3 (2)
Cu1—O2W—H2WA112.6C10—C9—C8124.6 (2)
Cu1—O2W—H2WB116.3C14—C9—C8118.1 (2)
H2WA—O2W—H2WB108.7C9—C10—C11121.4 (3)
N2—N1—C6113.2 (4)C9—C10—H10119.3
N1—N2—S1113.3 (3)C11—C10—H10119.3
N4—N3—C13112.3 (2)C12—C11—C10121.3 (3)
N3—N4—S2114.07 (18)C12—C11—H11119.3
N3—N4—Cu1126.89 (17)C10—C11—H11119.3
S2—N4—Cu1118.78 (12)C11—C12—C13118.4 (3)
O2—C1—O1125.6 (3)C11—C12—H12120.8
O2—C1—C2116.8 (3)C13—C12—H12120.8
O1—C1—C2117.6 (3)N3—C13—C12126.0 (3)
C3—C2—C7117.5 (3)N3—C13—C14113.7 (2)
C3—C2—C1123.5 (3)C12—C13—C14120.4 (2)
C7—C2—C1118.9 (3)C13—C14—C9121.2 (2)
C2—C3—C4121.1 (3)C13—C14—S2108.20 (19)
C2—C3—H3119.5C9—C14—S2130.6 (2)
O2—C1—C2—C3179.4 (3)C8—C9—C14—C13177.9 (2)
O1—C1—C2—C30.7 (4)C10—C9—C14—S2179.5 (2)
O2—C1—C2—C70.2 (4)C8—C9—C14—S21.2 (4)
O1—C1—C2—C7179.9 (3)C7—C6—N1—N21.4 (5)
C7—C2—C3—C40.1 (5)C5—C6—N1—N2179.3 (4)
C1—C2—C3—C4179.1 (3)C6—N1—N2—S11.0 (5)
C2—C3—C4—C51.2 (6)C12—C13—N3—N4179.6 (3)
C3—C4—C5—C61.4 (7)C14—C13—N3—N40.8 (4)
C4—C5—C6—C70.2 (6)C13—N3—N4—S20.2 (3)
C4—C5—C6—N1179.4 (4)C13—N3—N4—Cu1173.94 (19)
C5—C6—C7—C21.1 (6)O4i—Cu1—N4—N31.4 (2)
N1—C6—C7—C2178.2 (3)O1—Cu1—N4—N3178.4 (2)
C5—C6—C7—S1179.6 (3)O2W—Cu1—N4—N392.1 (2)
N1—C6—C7—S11.1 (4)O1W—Cu1—N4—N389.5 (2)
C3—C2—C7—C61.2 (5)O4i—Cu1—N4—S2172.46 (14)
C1—C2—C7—C6178.0 (3)O1—Cu1—N4—S27.74 (14)
C3—C2—C7—S1179.6 (3)O2W—Cu1—N4—S281.75 (14)
C1—C2—C7—S11.2 (4)O1W—Cu1—N4—S296.64 (14)
O3—C8—C9—C10178.6 (3)O2—C1—O1—Cu11.9 (4)
O4—C8—C9—C102.8 (4)C2—C1—O1—Cu1178.27 (19)
O3—C8—C9—C142.2 (4)O2W—Cu1—O1—C190.3 (2)
O4—C8—C9—C14176.4 (2)O1W—Cu1—O1—C177.8 (2)
C14—C9—C10—C110.3 (4)N4—Cu1—O1—C1176.1 (2)
C8—C9—C10—C11179.0 (3)O3—C8—O4—Cu1ii1.8 (4)
C9—C10—C11—C120.9 (5)C9—C8—O4—Cu1ii176.67 (18)
C10—C11—C12—C130.9 (5)N1—N2—S1—C70.3 (4)
C11—C12—C13—N3179.4 (3)C6—C7—S1—N20.5 (3)
C11—C12—C13—C140.2 (5)C2—C7—S1—N2178.8 (3)
N3—C13—C14—C9178.2 (2)N3—N4—S2—C140.4 (2)
C12—C13—C14—C91.4 (4)Cu1—N4—S2—C14175.00 (14)
N3—C13—C14—S21.0 (3)C13—C14—S2—N40.8 (2)
C12—C13—C14—S2179.3 (2)C9—C14—S2—N4178.4 (3)
C10—C9—C14—C131.4 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1wA···N3iii0.852.022.859 (4)169
O1w—H1wB···N1iv0.852.122.957 (4)170
O2w—H2wA···O3v0.851.842.680 (3)172
O2w—H2wB···O2vi0.851.842.684 (3)172
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y, z+2; (v) x+1, y, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3N2O2S)2(H2O)2]
Mr457.95
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.0061 (18), 9.4989 (19), 11.274 (2)
α, β, γ (°)86.62 (3), 70.00 (3), 76.69 (3)
V3)881.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.676, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
7632, 3089, 2767
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.08
No. of reflections3089
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.70

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O4i1.9405 (19)Cu1—O2W1.980 (2)
Cu1—O11.945 (2)Cu1—N42.311 (2)
Cu1—O1W1.991 (2)
O4i—Cu1—O1178.57 (8)O2W—Cu1—O1W168.13 (9)
O4i—Cu1—O2W90.50 (9)O4i—Cu1—N493.41 (8)
O1—Cu1—O2W89.78 (9)O1—Cu1—N485.18 (8)
O4i—Cu1—O1W90.40 (9)O2W—Cu1—N493.52 (9)
O1—Cu1—O1W89.61 (9)O1W—Cu1—N498.24 (9)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1wA···N3ii0.852.022.859 (4)169
O1w—H1wB···N1iii0.852.122.957 (4)170
O2w—H2wA···O3iv0.851.842.680 (3)172
O2w—H2wB···O2v0.851.842.684 (3)172
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1.
 

Acknowledgements

We are grateful for financial support from the Program for Excellent Introduced Talents of Tianjin Normal University (grant No. 5RL052).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBatzel, V. & Boese, R. (1981). Z. Naturforsh. Teil B, 36, 172–179.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, Z.-J., Liu, F.-L. & Liu, X.-F. (2005). Chin. Patent CN1 680 342A.  Google Scholar
First citationHou, Y., Wang, S.-T., Shen, E.-H., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Xu, L. & Hu, C.-W. (2004). Inorg. Chim. Acta, 357, 3155–3161.  Web of Science CSD CrossRef CAS Google Scholar
First citationLan, A. J., Li, K.-H., Wu, H.-H., Olson, D. H., Emge, T. J., Ki, W., Hong, M.-C. & Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334–2338.  CrossRef CAS Google Scholar
First citationLukashuk, L. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2007). Acta Cryst. C63, m140–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, J.-H., Wang, J.-G. & Hu, P.-Z. (2009). Acta Cryst. E65, m349–m350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRichardson, C. & Steel, P. J. (2002). Aust. J. Chem. 55, 783–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalter, K. & Beat, J. (1997). Eur. Patent EP 0 780 372 A2.  Google Scholar
First citationWang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Nature (London), 453, 207–211.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1181-m1182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds