metal-organic compounds
catena-Poly[[diaqua(1,2,3-benzothiadiazole-7-carboxylato-κO)copper(II)]-μ-1,2,3-benzothiadiazole-7-carboxylato-κ2N2:O]
aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: hsxyzgy@mail.tjnu.edu.cn
In the polymeric title complex, [Cu(C7H3N2O2S)2(H2O)2]n, the CuII centre is surrounded by three 1,2,3-benzothiadiazole-7-carboxylate and two water molecules. A 1,2,3-benzothiadiazole-7-carboxylate ligand bridges two CuII centres, with a Cu⋯Cu distance of 9.006 (2) Å. The four O atoms in the equatorial planes around each CuII centre form a distorted square-planar arrangement, while the distorted square-pyramidal coordination is completed by the symmetry-related N atoms of the bridging 1,2,3-benzothiadiazole-7-carboxylate ligands. In the intermolecular O—H⋯O and O—H⋯N hydrogen bonds link the molecules into a three-dimensional supramolecular network.
Related literature
For general background, see: Addison et al. (1984); Hou et al. (2004); Lan et al. (2009); Wang et al. (2008). For related structures, see: Batzel & Boese (1981); Fan et al. (2005); Lukashuk et al. (2007); Qin et al. (2009); Richardson & Steel (2002); Walter & Beat (1997).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809032036/hk2737sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809032036/hk2737Isup2.hkl
1,2,3-Benzothiadiazole-7-carboxylic acid (HL) was prepared according to the method of Fan et al. (2005) and Walter & Beat (1997). For the preparation of the title complex, a mixture of cupric nitrate (0.233 g, 1 mmol), HL (0.090 g, 0.5 mmol), sodium azide (0.065 g, 1 mmol) and water (12 ml) were placed in a Teflon reactor (23 ml), which was heated to 413 K for 2 d, and then cooled to room temperature at a rate of 5 K h-1. The crystals obtained were washed with water and dried in air (yield; 0.034 g, 30%).
H atoms were positioned geometrically with O-H = 0.85 Å (for H2O) and C-H = 0.93 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,O).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C7H3N2O2S)2(H2O)2] | Z = 2 |
Mr = 457.95 | F(000) = 462 |
Triclinic, P1 | Dx = 1.725 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0061 (18) Å | Cell parameters from 8567 reflections |
b = 9.4989 (19) Å | θ = 3.0–27.5° |
c = 11.274 (2) Å | µ = 1.52 mm−1 |
α = 86.62 (3)° | T = 294 K |
β = 70.00 (3)° | Block, green |
γ = 76.69 (3)° | 0.28 × 0.26 × 0.24 mm |
V = 881.8 (4) Å3 |
Rigaku R-AXIS RAPID-S diffractometer | 3089 independent reflections |
Radiation source: fine-focus sealed tube | 2767 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→10 |
Tmin = 0.676, Tmax = 0.712 | k = −11→11 |
7632 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0321P)2 + 0.8111P] where P = (Fo2 + 2Fc2)/3 |
3089 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
[Cu(C7H3N2O2S)2(H2O)2] | γ = 76.69 (3)° |
Mr = 457.95 | V = 881.8 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0061 (18) Å | Mo Kα radiation |
b = 9.4989 (19) Å | µ = 1.52 mm−1 |
c = 11.274 (2) Å | T = 294 K |
α = 86.62 (3)° | 0.28 × 0.26 × 0.24 mm |
β = 70.00 (3)° |
Rigaku R-AXIS RAPID-S diffractometer | 3089 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2767 reflections with I > 2σ(I) |
Tmin = 0.676, Tmax = 0.712 | Rint = 0.027 |
7632 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.72 e Å−3 |
3089 reflections | Δρmin = −0.70 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.07536 (4) | 0.21613 (4) | 0.52609 (3) | 0.03039 (13) | |
S1 | −0.01189 (13) | −0.19206 (11) | 0.93629 (9) | 0.0624 (3) | |
S2 | 0.46168 (8) | 0.25680 (7) | 0.48652 (7) | 0.02732 (17) | |
O1 | 0.1924 (2) | 0.1114 (2) | 0.6325 (2) | 0.0383 (5) | |
O2 | −0.0035 (3) | −0.0020 (3) | 0.7417 (2) | 0.0503 (6) | |
O3 | 0.7573 (2) | 0.2143 (2) | 0.5117 (2) | 0.0394 (5) | |
O4 | 0.9626 (2) | 0.3236 (2) | 0.41845 (19) | 0.0342 (5) | |
O1W | −0.0550 (3) | 0.3574 (2) | 0.6674 (2) | 0.0419 (5) | |
H1WA | −0.1223 | 0.4295 | 0.6535 | 0.050* | |
H1WB | −0.0840 | 0.3276 | 0.7426 | 0.050* | |
O2W | 0.1701 (2) | 0.0527 (2) | 0.4022 (2) | 0.0392 (5) | |
H2WA | 0.1911 | −0.0281 | 0.4364 | 0.047* | |
H2WB | 0.1169 | 0.0445 | 0.3546 | 0.047* | |
N1 | 0.1677 (6) | −0.2901 (4) | 1.0612 (3) | 0.0790 (12) | |
N2 | 0.0307 (6) | −0.2940 (4) | 1.0531 (3) | 0.0850 (13) | |
N3 | 0.3144 (3) | 0.4182 (3) | 0.3579 (2) | 0.0317 (6) | |
N4 | 0.2960 (3) | 0.3209 (3) | 0.4435 (2) | 0.0297 (5) | |
C1 | 0.1326 (4) | 0.0272 (3) | 0.7175 (3) | 0.0338 (7) | |
C2 | 0.2317 (4) | −0.0441 (3) | 0.7958 (3) | 0.0325 (7) | |
C3 | 0.3828 (4) | −0.0218 (4) | 0.7812 (3) | 0.0449 (8) | |
H3 | 0.4279 | 0.0396 | 0.7189 | 0.054* | |
C4 | 0.4696 (5) | −0.0901 (5) | 0.8587 (4) | 0.0679 (12) | |
H4 | 0.5723 | −0.0749 | 0.8461 | 0.081* | |
C5 | 0.4045 (7) | −0.1796 (5) | 0.9534 (4) | 0.0801 (14) | |
H5 | 0.4615 | −0.2231 | 1.0058 | 0.096* | |
C6 | 0.2523 (6) | −0.2038 (4) | 0.9695 (3) | 0.0589 (11) | |
C7 | 0.1684 (4) | −0.1379 (3) | 0.8911 (3) | 0.0417 (8) | |
C8 | 0.8229 (3) | 0.3009 (3) | 0.4353 (3) | 0.0280 (6) | |
C9 | 0.7259 (3) | 0.3865 (3) | 0.3602 (3) | 0.0248 (6) | |
C10 | 0.7796 (3) | 0.4848 (3) | 0.2697 (3) | 0.0324 (7) | |
H10 | 0.8837 | 0.4994 | 0.2516 | 0.039* | |
C11 | 0.6799 (4) | 0.5634 (4) | 0.2040 (3) | 0.0417 (8) | |
H11 | 0.7201 | 0.6279 | 0.1427 | 0.050* | |
C12 | 0.5250 (4) | 0.5467 (4) | 0.2289 (3) | 0.0408 (8) | |
H12 | 0.4596 | 0.5999 | 0.1861 | 0.049* | |
C13 | 0.4677 (3) | 0.4475 (3) | 0.3204 (3) | 0.0290 (6) | |
C14 | 0.5674 (3) | 0.3674 (3) | 0.3842 (2) | 0.0235 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0250 (2) | 0.0314 (2) | 0.0390 (2) | −0.00883 (15) | −0.01637 (16) | 0.01192 (16) |
S1 | 0.0723 (7) | 0.0527 (6) | 0.0441 (5) | −0.0254 (5) | 0.0109 (5) | −0.0026 (4) |
S2 | 0.0229 (4) | 0.0284 (4) | 0.0320 (4) | −0.0074 (3) | −0.0111 (3) | 0.0081 (3) |
O1 | 0.0362 (12) | 0.0411 (12) | 0.0418 (12) | −0.0105 (10) | −0.0200 (10) | 0.0181 (10) |
O2 | 0.0419 (14) | 0.0670 (16) | 0.0460 (14) | −0.0204 (12) | −0.0153 (11) | 0.0068 (12) |
O3 | 0.0299 (11) | 0.0369 (12) | 0.0539 (14) | −0.0090 (9) | −0.0190 (10) | 0.0187 (11) |
O4 | 0.0251 (10) | 0.0385 (11) | 0.0447 (12) | −0.0079 (9) | −0.0196 (9) | 0.0095 (10) |
O1W | 0.0441 (13) | 0.0423 (12) | 0.0357 (12) | 0.0003 (10) | −0.0170 (10) | 0.0092 (10) |
O2W | 0.0419 (12) | 0.0311 (11) | 0.0498 (13) | −0.0092 (9) | −0.0229 (11) | 0.0104 (10) |
N1 | 0.144 (4) | 0.056 (2) | 0.0344 (18) | −0.032 (3) | −0.024 (2) | 0.0204 (16) |
N2 | 0.134 (4) | 0.064 (2) | 0.0390 (19) | −0.038 (3) | 0.002 (2) | 0.0074 (17) |
N3 | 0.0251 (12) | 0.0383 (14) | 0.0354 (14) | −0.0095 (11) | −0.0147 (11) | 0.0091 (11) |
N4 | 0.0234 (12) | 0.0335 (13) | 0.0339 (13) | −0.0091 (10) | −0.0111 (11) | 0.0071 (11) |
C1 | 0.0348 (17) | 0.0346 (16) | 0.0311 (16) | −0.0053 (14) | −0.0110 (14) | −0.0020 (13) |
C2 | 0.0415 (18) | 0.0295 (15) | 0.0229 (14) | −0.0044 (13) | −0.0087 (13) | 0.0009 (12) |
C3 | 0.052 (2) | 0.047 (2) | 0.0402 (19) | −0.0129 (16) | −0.0223 (17) | 0.0093 (16) |
C4 | 0.070 (3) | 0.079 (3) | 0.073 (3) | −0.018 (2) | −0.050 (2) | 0.014 (2) |
C5 | 0.122 (4) | 0.073 (3) | 0.066 (3) | −0.020 (3) | −0.065 (3) | 0.031 (2) |
C6 | 0.098 (3) | 0.046 (2) | 0.0348 (19) | −0.015 (2) | −0.027 (2) | 0.0093 (17) |
C7 | 0.060 (2) | 0.0334 (16) | 0.0248 (15) | −0.0096 (15) | −0.0057 (15) | −0.0015 (13) |
C8 | 0.0238 (14) | 0.0255 (14) | 0.0340 (16) | −0.0019 (12) | −0.0108 (12) | −0.0004 (12) |
C9 | 0.0224 (14) | 0.0237 (14) | 0.0277 (14) | −0.0036 (11) | −0.0083 (12) | −0.0030 (11) |
C10 | 0.0263 (15) | 0.0358 (16) | 0.0359 (16) | −0.0114 (13) | −0.0092 (13) | 0.0048 (13) |
C11 | 0.0410 (18) | 0.0477 (19) | 0.0409 (18) | −0.0204 (15) | −0.0159 (15) | 0.0224 (16) |
C12 | 0.0376 (18) | 0.0481 (19) | 0.0421 (18) | −0.0128 (15) | −0.0215 (15) | 0.0221 (15) |
C13 | 0.0240 (14) | 0.0338 (15) | 0.0323 (15) | −0.0083 (12) | −0.0132 (13) | 0.0060 (13) |
C14 | 0.0232 (14) | 0.0232 (13) | 0.0234 (13) | −0.0047 (11) | −0.0075 (11) | 0.0003 (11) |
Cu1—O4i | 1.9405 (19) | C4—H4 | 0.9300 |
Cu1—O1 | 1.945 (2) | C5—C6 | 1.391 (6) |
Cu1—O1W | 1.991 (2) | C5—H5 | 0.9300 |
Cu1—O2W | 1.980 (2) | C6—C7 | 1.385 (5) |
Cu1—N4 | 2.311 (2) | C6—N1 | 1.404 (5) |
O1W—H1WA | 0.8500 | C7—S1 | 1.717 (4) |
O1W—H1WB | 0.8500 | C8—O3 | 1.249 (3) |
O2W—H2WA | 0.8500 | C8—O4 | 1.273 (3) |
O2W—H2WB | 0.8500 | C8—C9 | 1.497 (4) |
N1—N2 | 1.277 (6) | C9—C10 | 1.380 (4) |
N2—S1 | 1.686 (4) | C9—C14 | 1.412 (4) |
N3—N4 | 1.292 (3) | C10—C11 | 1.412 (4) |
N4—S2 | 1.695 (2) | C10—H10 | 0.9300 |
C1—O2 | 1.254 (4) | C11—C12 | 1.371 (4) |
C1—O1 | 1.265 (4) | C11—H11 | 0.9300 |
C1—C2 | 1.493 (4) | C12—C13 | 1.401 (4) |
C2—C3 | 1.378 (4) | C12—H12 | 0.9300 |
C2—C7 | 1.405 (4) | C13—N3 | 1.388 (3) |
C3—C4 | 1.400 (5) | C13—C14 | 1.402 (4) |
C3—H3 | 0.9300 | C14—S2 | 1.706 (3) |
C4—C5 | 1.379 (6) | ||
O4i—Cu1—O1 | 178.57 (8) | C4—C3—H3 | 119.5 |
O4i—Cu1—O2W | 90.50 (9) | C5—C4—C3 | 120.7 (4) |
O1—Cu1—O2W | 89.78 (9) | C5—C4—H4 | 119.7 |
O4i—Cu1—O1W | 90.40 (9) | C3—C4—H4 | 119.7 |
O1—Cu1—O1W | 89.61 (9) | C4—C5—C6 | 119.1 (4) |
O2W—Cu1—O1W | 168.13 (9) | C4—C5—H5 | 120.5 |
O4i—Cu1—N4 | 93.41 (8) | C6—C5—H5 | 120.5 |
O1—Cu1—N4 | 85.18 (8) | C7—C6—C5 | 119.9 (3) |
O2W—Cu1—N4 | 93.52 (9) | C7—C6—N1 | 113.5 (4) |
O1W—Cu1—N4 | 98.24 (9) | C5—C6—N1 | 126.7 (4) |
N2—S1—C7 | 92.6 (2) | C6—C7—C2 | 121.7 (3) |
N4—S2—C14 | 91.77 (12) | C6—C7—S1 | 107.5 (3) |
C1—O1—Cu1 | 122.34 (19) | C2—C7—S1 | 130.8 (3) |
C8—O4—Cu1ii | 115.52 (18) | O3—C8—O4 | 125.5 (3) |
Cu1—O1W—H1WA | 118.0 | O3—C8—C9 | 116.4 (2) |
Cu1—O1W—H1WB | 119.4 | O4—C8—C9 | 118.1 (2) |
H1WA—O1W—H1WB | 114.1 | C10—C9—C14 | 117.3 (2) |
Cu1—O2W—H2WA | 112.6 | C10—C9—C8 | 124.6 (2) |
Cu1—O2W—H2WB | 116.3 | C14—C9—C8 | 118.1 (2) |
H2WA—O2W—H2WB | 108.7 | C9—C10—C11 | 121.4 (3) |
N2—N1—C6 | 113.2 (4) | C9—C10—H10 | 119.3 |
N1—N2—S1 | 113.3 (3) | C11—C10—H10 | 119.3 |
N4—N3—C13 | 112.3 (2) | C12—C11—C10 | 121.3 (3) |
N3—N4—S2 | 114.07 (18) | C12—C11—H11 | 119.3 |
N3—N4—Cu1 | 126.89 (17) | C10—C11—H11 | 119.3 |
S2—N4—Cu1 | 118.78 (12) | C11—C12—C13 | 118.4 (3) |
O2—C1—O1 | 125.6 (3) | C11—C12—H12 | 120.8 |
O2—C1—C2 | 116.8 (3) | C13—C12—H12 | 120.8 |
O1—C1—C2 | 117.6 (3) | N3—C13—C12 | 126.0 (3) |
C3—C2—C7 | 117.5 (3) | N3—C13—C14 | 113.7 (2) |
C3—C2—C1 | 123.5 (3) | C12—C13—C14 | 120.4 (2) |
C7—C2—C1 | 118.9 (3) | C13—C14—C9 | 121.2 (2) |
C2—C3—C4 | 121.1 (3) | C13—C14—S2 | 108.20 (19) |
C2—C3—H3 | 119.5 | C9—C14—S2 | 130.6 (2) |
O2—C1—C2—C3 | −179.4 (3) | C8—C9—C14—C13 | 177.9 (2) |
O1—C1—C2—C3 | 0.7 (4) | C10—C9—C14—S2 | 179.5 (2) |
O2—C1—C2—C7 | −0.2 (4) | C8—C9—C14—S2 | −1.2 (4) |
O1—C1—C2—C7 | 179.9 (3) | C7—C6—N1—N2 | 1.4 (5) |
C7—C2—C3—C4 | −0.1 (5) | C5—C6—N1—N2 | −179.3 (4) |
C1—C2—C3—C4 | 179.1 (3) | C6—N1—N2—S1 | −1.0 (5) |
C2—C3—C4—C5 | −1.2 (6) | C12—C13—N3—N4 | 179.6 (3) |
C3—C4—C5—C6 | 1.4 (7) | C14—C13—N3—N4 | −0.8 (4) |
C4—C5—C6—C7 | −0.2 (6) | C13—N3—N4—S2 | 0.2 (3) |
C4—C5—C6—N1 | −179.4 (4) | C13—N3—N4—Cu1 | −173.94 (19) |
C5—C6—C7—C2 | −1.1 (6) | O4i—Cu1—N4—N3 | 1.4 (2) |
N1—C6—C7—C2 | 178.2 (3) | O1—Cu1—N4—N3 | −178.4 (2) |
C5—C6—C7—S1 | 179.6 (3) | O2W—Cu1—N4—N3 | 92.1 (2) |
N1—C6—C7—S1 | −1.1 (4) | O1W—Cu1—N4—N3 | −89.5 (2) |
C3—C2—C7—C6 | 1.2 (5) | O4i—Cu1—N4—S2 | −172.46 (14) |
C1—C2—C7—C6 | −178.0 (3) | O1—Cu1—N4—S2 | 7.74 (14) |
C3—C2—C7—S1 | −179.6 (3) | O2W—Cu1—N4—S2 | −81.75 (14) |
C1—C2—C7—S1 | 1.2 (4) | O1W—Cu1—N4—S2 | 96.64 (14) |
O3—C8—C9—C10 | −178.6 (3) | O2—C1—O1—Cu1 | 1.9 (4) |
O4—C8—C9—C10 | 2.8 (4) | C2—C1—O1—Cu1 | −178.27 (19) |
O3—C8—C9—C14 | 2.2 (4) | O2W—Cu1—O1—C1 | −90.3 (2) |
O4—C8—C9—C14 | −176.4 (2) | O1W—Cu1—O1—C1 | 77.8 (2) |
C14—C9—C10—C11 | 0.3 (4) | N4—Cu1—O1—C1 | 176.1 (2) |
C8—C9—C10—C11 | −179.0 (3) | O3—C8—O4—Cu1ii | −1.8 (4) |
C9—C10—C11—C12 | 0.9 (5) | C9—C8—O4—Cu1ii | 176.67 (18) |
C10—C11—C12—C13 | −0.9 (5) | N1—N2—S1—C7 | 0.3 (4) |
C11—C12—C13—N3 | 179.4 (3) | C6—C7—S1—N2 | 0.5 (3) |
C11—C12—C13—C14 | −0.2 (5) | C2—C7—S1—N2 | −178.8 (3) |
N3—C13—C14—C9 | −178.2 (2) | N3—N4—S2—C14 | 0.4 (2) |
C12—C13—C14—C9 | 1.4 (4) | Cu1—N4—S2—C14 | 175.00 (14) |
N3—C13—C14—S2 | 1.0 (3) | C13—C14—S2—N4 | −0.8 (2) |
C12—C13—C14—S2 | −179.3 (2) | C9—C14—S2—N4 | 178.4 (3) |
C10—C9—C14—C13 | −1.4 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1wA···N3iii | 0.85 | 2.02 | 2.859 (4) | 169 |
O1w—H1wB···N1iv | 0.85 | 2.12 | 2.957 (4) | 170 |
O2w—H2wA···O3v | 0.85 | 1.84 | 2.680 (3) | 172 |
O2w—H2wB···O2vi | 0.85 | 1.84 | 2.684 (3) | 172 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+2; (v) −x+1, −y, −z+1; (vi) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3N2O2S)2(H2O)2] |
Mr | 457.95 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 9.0061 (18), 9.4989 (19), 11.274 (2) |
α, β, γ (°) | 86.62 (3), 70.00 (3), 76.69 (3) |
V (Å3) | 881.8 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.28 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.676, 0.712 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7632, 3089, 2767 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.083, 1.08 |
No. of reflections | 3089 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.70 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O4i | 1.9405 (19) | Cu1—O2W | 1.980 (2) |
Cu1—O1 | 1.945 (2) | Cu1—N4 | 2.311 (2) |
Cu1—O1W | 1.991 (2) | ||
O4i—Cu1—O1 | 178.57 (8) | O2W—Cu1—O1W | 168.13 (9) |
O4i—Cu1—O2W | 90.50 (9) | O4i—Cu1—N4 | 93.41 (8) |
O1—Cu1—O2W | 89.78 (9) | O1—Cu1—N4 | 85.18 (8) |
O4i—Cu1—O1W | 90.40 (9) | O2W—Cu1—N4 | 93.52 (9) |
O1—Cu1—O1W | 89.61 (9) | O1W—Cu1—N4 | 98.24 (9) |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1wA···N3ii | 0.85 | 2.02 | 2.859 (4) | 169 |
O1w—H1wB···N1iii | 0.85 | 2.12 | 2.957 (4) | 170 |
O2w—H2wA···O3iv | 0.85 | 1.84 | 2.680 (3) | 172 |
O2w—H2wB···O2v | 0.85 | 1.84 | 2.684 (3) | 172 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+2; (iv) −x+1, −y, −z+1; (v) −x, −y, −z+1. |
Acknowledgements
We are grateful for financial support from the Program for Excellent Introduced Talents of Tianjin Normal University (grant No. 5RL052).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Batzel, V. & Boese, R. (1981). Z. Naturforsh. Teil B, 36, 172–179. Google Scholar
Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fan, Z.-J., Liu, F.-L. & Liu, X.-F. (2005). Chin. Patent CN1 680 342A. Google Scholar
Hou, Y., Wang, S.-T., Shen, E.-H., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Xu, L. & Hu, C.-W. (2004). Inorg. Chim. Acta, 357, 3155–3161. Web of Science CSD CrossRef CAS Google Scholar
Lan, A. J., Li, K.-H., Wu, H.-H., Olson, D. H., Emge, T. J., Ki, W., Hong, M.-C. & Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334–2338. CrossRef CAS Google Scholar
Lukashuk, L. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2007). Acta Cryst. C63, m140–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qin, J.-H., Wang, J.-G. & Hu, P.-Z. (2009). Acta Cryst. E65, m349–m350. Web of Science CSD CrossRef IUCr Journals Google Scholar
Richardson, C. & Steel, P. J. (2002). Aust. J. Chem. 55, 783–788. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walter, K. & Beat, J. (1997). Eur. Patent EP 0 780 372 A2. Google Scholar
Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Nature (London), 453, 207–211. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and syntheses of supramolecular complexes exhibiting novel structures and their properties have provided exciting new prospects for chemists (Wang et al., 2008). To date, a number of monometallic extended inorganic-organic composite materials have been synthesized by the combination of organic spacers and inorganic metal salts (Lan et al., 2009). The rational design and construction of complexes greatly depend on the judicious selection of the organic ligands and proper choice of metal centers. Among various ligands, the versatile carboxylic acid ligands exhibiting diverse coordination modes, have been well used in the preparations of various metal-organic complexes, which exhibit interesting applications as functional materials (Hou et al., 2004). 1,2,3-Benzothiadiazole-7-carboxylic acid (HL) known as a disease-resistance activator of plant is a versatile carboxylic acid ligand containing N and S donors for the following reasons: (1) HL has a group –COOH and a thiadiazole ring, in which the O, N and S atoms all could coordinate to metal ions. So HL can act as a bridging ligand. (2) The large conjugated π system of benzothiadiazole ring may act as the directing group for π···π stacking and C—H···π interactions. (3) Both N and O atoms in HL being typical electron donor in forming hydrogen bond, therefore may construct H-bonded supramolecular framework. However, up to now, HL has been largely ignored by coordination chemists and it has not been used for the preparation of metal complexes. We report herein the preparation and crystal structure of the title complex.
In the polymeric title complex, each Cu atom is surrounded by three 1,2,3-benzo- thiadiazole-7-carboxylate and two water molecules. A 1,2,3-benzothiadiazole-7 -carboxylate ligand bridges the two Cu atoms (Fig. 1) with a Cu···Cu distance of 9.006 (2) Å. The four O atoms (O1, O1W, O2W and O4i) [symmetry code (i): x - 1, y, z] in the equatorial planes around each Cu atom form a distorted square-planar arrangement, while the distorted square-pyramidal coordination is completed by the symmetry related N atoms of the bridging 1,2,3-benzothiadiazole -7-carboxylate ligands (Fig. 2).
In general, several parameters are often used to define the coordination geometries of the penta-coordinated metal centers, and one of the most common parameters is the τ factor defined by Addison et al. (τ = 0 for perfect square-pyramid environment and τ = 1 for trigonal bipyramidal geometry) (Addison et al., 1984). For the title compound, the calculated τ value is 0.173, which corresponds to an approximately square-pyramidal coordination environment.
The Cu-O and Cu-N bonds (Table 1) are in good agreement with the coreesponding values reported for Cu-carboxylate, [Cu(H2O)2], and Cu-thiadiazole complexes (Lukashuk et al., 2007; Qin et al., 2009). To the best of our knowledge, there is no report on the crystal structures of metal complexes of 1,2,3-thiadiazole, except of a molybdenum pentacarbonyl complex of 4-phenyl-1,2,3-thiadiazole (Batzel & Boese, 1981) and a silver tetrafluoroborate complex of 2-(1,2,3-thiadiazol-4-yl)pyridine (Richardson & Steel, 2002).
In the crystal structure, strong intermolecular O-H···O and O-H···N hydrogen bonds (Table 2) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.