organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro­benzyl 2-chloro­acetate

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.edu.cn

(Received 6 August 2009; accepted 10 August 2009; online 5 September 2009)

In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H⋯O inter­action results in the formation of a near-planar (r.m.s. deviation 0.002 Å) five-membered ring, which is oriented at a dihedral angle of 4.07 (4)° with respect to the adjacent aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For a related structure, see: Pyun et al. (2001[Pyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950-1952.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClNO4

  • Mr = 229.61

  • Monoclinic, P 21 /c

  • a = 8.0270 (16) Å

  • b = 6.7530 (14) Å

  • c = 19.266 (4) Å

  • β = 92.52 (3)°

  • V = 1043.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.900, Tmax = 0.965

  • 2036 measured reflections

  • 1893 independent reflections

  • 891 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.195

  • S = 1.00

  • 1893 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.97 2.43 3.372 (6) 166
C7—H7A⋯O1ii 0.93 2.58 3.374 (6) 143
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of p-nitrobenzyl alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar five-membered ring B (O2/C3/C4/C9/H9A), which is oriented with respect to the adjacent ring A at a dihedral angle of A/B = 4.07 (4)°.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Pyun et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, chloroacetyl chloride (1.1 g) and 2-nitrobenzyl alcohol (1.53 g) were added into the mixture of pyridine (15 ml) and dichloromethane (30 ml) at 273–278 K. The gross products were extracted with n-hexane, washed with water and dried under vacuum, and then recrystallized from dichloromethane. Finally the title compound was obtained (yield; 0.61 g) (Pyun et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Nitrobenzyl 2-chloroacetate top
Crystal data top
C9H8ClNO4F(000) = 472
Mr = 229.61Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.0270 (16) Åθ = 9–13°
b = 6.7530 (14) ŵ = 0.36 mm1
c = 19.266 (4) ÅT = 294 K
β = 92.52 (3)°Block, yellow
V = 1043.3 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.900, Tmax = 0.965l = 2323
2036 measured reflections3 standard reflections every 120 min
1893 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.07P)2 + 0.84P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1893 reflectionsΔρmax = 0.29 e Å3
137 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (4)
Crystal data top
C9H8ClNO4V = 1043.3 (4) Å3
Mr = 229.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0270 (16) ŵ = 0.36 mm1
b = 6.7530 (14) ÅT = 294 K
c = 19.266 (4) Å0.30 × 0.20 × 0.10 mm
β = 92.52 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
891 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.900, Tmax = 0.9653 standard reflections every 120 min
2036 measured reflections intensity decay: 1%
1893 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
1893 reflectionsΔρmin = 0.23 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.3781 (2)0.3294 (4)0.19943 (9)0.1458 (10)
O10.0286 (4)0.3868 (6)0.25207 (18)0.0985 (12)
O20.0679 (3)0.2382 (5)0.35365 (15)0.0743 (9)
O30.4281 (5)0.3113 (9)0.3977 (2)0.151 (2)
O40.5546 (5)0.2492 (8)0.4935 (3)0.161 (2)
N0.4264 (5)0.2744 (8)0.4576 (3)0.1028 (16)
C10.2908 (6)0.2341 (10)0.2755 (2)0.1002 (18)
H1A0.35770.27450.31370.120*
H1B0.29390.09060.27300.120*
C20.1141 (6)0.2988 (7)0.2904 (2)0.0722 (13)
C30.1048 (5)0.2696 (7)0.3759 (2)0.0722 (13)
H3A0.14240.39760.36000.087*
H3B0.17460.16800.35660.087*
C40.1165 (5)0.2610 (6)0.4535 (2)0.0559 (10)
C50.2673 (5)0.2629 (7)0.4927 (2)0.0706 (13)
C60.2753 (7)0.2548 (8)0.5642 (3)0.0889 (15)
H6A0.37800.25670.58850.107*
C70.1300 (8)0.2440 (7)0.5994 (3)0.0874 (15)
H7A0.13320.23790.64770.105*
C80.0187 (6)0.2423 (7)0.5624 (2)0.0735 (13)
H8A0.11730.23640.58590.088*
C90.0259 (5)0.2491 (6)0.4913 (2)0.0599 (11)
H9A0.12940.24560.46770.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1014 (12)0.224 (2)0.1105 (13)0.0086 (13)0.0150 (9)0.0395 (14)
O10.101 (3)0.116 (3)0.080 (2)0.014 (2)0.0205 (19)0.024 (2)
O20.0632 (18)0.096 (2)0.0641 (19)0.0135 (17)0.0092 (14)0.0080 (17)
O30.074 (2)0.267 (7)0.115 (3)0.035 (3)0.041 (2)0.036 (4)
O40.055 (2)0.222 (6)0.205 (5)0.002 (3)0.001 (3)0.003 (4)
N0.049 (3)0.122 (4)0.138 (4)0.010 (3)0.013 (3)0.032 (4)
C10.077 (3)0.148 (5)0.076 (3)0.006 (4)0.004 (2)0.008 (3)
C20.080 (3)0.075 (3)0.064 (3)0.004 (3)0.018 (2)0.000 (3)
C30.062 (3)0.080 (3)0.076 (3)0.008 (2)0.021 (2)0.005 (3)
C40.051 (2)0.050 (2)0.068 (2)0.000 (2)0.0161 (19)0.005 (2)
C50.057 (2)0.071 (3)0.086 (3)0.005 (2)0.016 (2)0.007 (3)
C60.081 (3)0.091 (4)0.093 (4)0.003 (3)0.015 (3)0.004 (3)
C70.114 (4)0.080 (4)0.069 (3)0.001 (4)0.015 (3)0.001 (3)
C80.078 (3)0.064 (3)0.080 (3)0.003 (3)0.028 (3)0.001 (3)
C90.056 (2)0.056 (3)0.070 (3)0.001 (2)0.0164 (19)0.001 (2)
Geometric parameters (Å, º) top
Cl—C11.721 (5)C3—H3B0.9700
O1—C21.189 (5)C4—C91.385 (5)
O2—C21.324 (5)C4—C51.398 (6)
O2—C31.448 (5)C5—C61.378 (6)
N—O31.181 (6)C6—C71.377 (7)
N—O41.227 (6)C6—H6A0.9300
N—C51.472 (6)C7—C81.363 (7)
C1—C21.499 (7)C7—H7A0.9300
C1—H1A0.9700C8—C91.369 (6)
C1—H1B0.9700C8—H8A0.9300
C3—C41.494 (6)C9—H9A0.9300
C3—H3A0.9700
C2—O2—C3117.0 (3)C9—C4—C5115.6 (4)
O3—N—O4122.3 (5)C9—C4—C3120.8 (4)
O3—N—C5120.5 (5)C5—C4—C3123.7 (4)
O4—N—C5117.2 (6)C6—C5—C4122.7 (4)
C2—C1—Cl113.6 (4)C6—C5—N117.2 (5)
C2—C1—H1A108.8C4—C5—N120.0 (4)
Cl—C1—H1A108.8C7—C6—C5119.5 (5)
C2—C1—H1B108.8C7—C6—H6A120.3
Cl—C1—H1B108.8C5—C6—H6A120.3
H1A—C1—H1B107.7C8—C7—C6119.0 (5)
O1—C2—O2125.4 (5)C8—C7—H7A120.5
O1—C2—C1126.5 (5)C6—C7—H7A120.5
O2—C2—C1108.1 (4)C7—C8—C9121.4 (4)
O2—C3—C4107.9 (3)C7—C8—H8A119.3
O2—C3—H3A110.1C9—C8—H8A119.3
C4—C3—H3A110.1C8—C9—C4121.9 (4)
O2—C3—H3B110.1C8—C9—H9A119.0
C4—C3—H3B110.1C4—C9—H9A119.0
H3A—C3—H3B108.4
C3—O2—C2—O14.6 (7)O3—N—C5—C6168.6 (6)
C3—O2—C2—C1174.4 (4)O4—N—C5—C69.6 (8)
Cl—C1—C2—O19.0 (8)O3—N—C5—C411.2 (8)
Cl—C1—C2—O2172.1 (3)O4—N—C5—C4170.6 (5)
C2—O2—C3—C4159.9 (4)C4—C5—C6—C70.2 (8)
O2—C3—C4—C97.0 (6)N—C5—C6—C7180.0 (5)
O2—C3—C4—C5172.5 (4)C5—C6—C7—C80.3 (8)
C9—C4—C5—C60.4 (7)C6—C7—C8—C90.7 (8)
C3—C4—C5—C6180.0 (5)C7—C8—C9—C41.0 (7)
C9—C4—C5—N179.8 (4)C5—C4—C9—C80.8 (6)
C3—C4—C5—N0.2 (7)C3—C4—C9—C8179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.433.372 (6)166
C7—H7A···O1ii0.932.583.374 (6)143
C9—H9A···O20.932.272.660 (5)104
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8ClNO4
Mr229.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.0270 (16), 6.7530 (14), 19.266 (4)
β (°) 92.52 (3)
V3)1043.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.900, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
2036, 1893, 891
Rint0.025
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.195, 1.00
No. of reflections1893
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.433.372 (6)166
C7—H7A···O1ii0.932.583.374 (6)143
C9—H9A···O20.932.272.660 (5)104
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Innovation Fund for doctoral theses (BSCX200811), Nanjing University of Technology, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950–1952.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds