organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-chloro­azepan-2-one

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 8 August 2009; accepted 22 August 2009; online 9 September 2009)

In the crystal structure of the title compound, C13H14ClNO2, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For related structures, see: Tull et al. (1964[Tull, R., O'Neill, R. C., McCarthy, E. P., Pappas, J. J. & Chemerda, J. M. (1964). J. Org. Chem. 29, 2425-2426.]); Largman et al. (1979[Largman, T., Sifniades, S. & Schmehl, L. J. (1979). Synth. Commun. 9, 255-259.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14ClNO2

  • Mr = 251.70

  • Orthorhombic, P n a 21

  • a = 19.564 (4) Å

  • b = 7.6500 (15) Å

  • c = 8.4050 (17) Å

  • V = 1257.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.917, Tmax = 0.971

  • 2413 measured reflections

  • 1229 independent reflections

  • 968 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.01

  • 1229 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1184 Friedel pairs

  • Flack parameter: 0.07 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.43 3.335 (6) 163
C12—H12A⋯O2ii 0.98 2.56 3.319 (5) 134
Symmetry codes: (i) x, y+1, z; (ii) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

N-substituted-3-chlorocaprolactams are used as medicines and as intermediate compounds for producing various organic chemicals. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar, while the seven-membered ring B (N/C8-C13) is not planar, having total puckering amplitude, QT, of 0.841 (2) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be efective in the stabilization of the structure.

Related literature top

For related structures, see: Tull et al. (1964); Largman et al. (1979). For ring-puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to a literature method (Tull et al., 1964). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Largman et al., 1979). Crystals suitable for X-ray analysis were obtained from slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-Benzoyl-3-chloroazepan-2-one top
Crystal data top
C13H14ClNO2F(000) = 528
Mr = 251.70Dx = 1.329 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 19.564 (4) Åθ = 10–13°
b = 7.6500 (15) ŵ = 0.29 mm1
c = 8.4050 (17) ÅT = 294 K
V = 1257.9 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 2323
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.917, Tmax = 0.971l = 010
2413 measured reflections3 standard reflections every 120 min
1229 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.17 e Å3
1229 reflectionsΔρmin = 0.16 e Å3
155 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.020 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1184 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (12)
Crystal data top
C13H14ClNO2V = 1257.9 (4) Å3
Mr = 251.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.564 (4) ŵ = 0.29 mm1
b = 7.6500 (15) ÅT = 294 K
c = 8.4050 (17) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
968 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.917, Tmax = 0.9713 standard reflections every 120 min
2413 measured reflections intensity decay: 1%
1229 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.16 e Å3
1229 reflectionsAbsolute structure: Flack (1983), 1184 Friedel pairs
155 parametersAbsolute structure parameter: 0.07 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.11953 (5)0.57305 (14)0.24751 (14)0.0715 (4)
O10.1309 (2)0.1107 (4)0.1382 (6)0.1086 (15)
O20.00941 (14)0.4326 (3)0.3449 (4)0.0675 (9)
N0.03396 (16)0.2690 (4)0.1259 (4)0.0536 (8)
C10.2327 (2)0.5048 (9)0.3917 (8)0.0978 (18)
H1A0.26640.48390.46740.117*
C20.1934 (2)0.3696 (7)0.3412 (7)0.0795 (14)
H2A0.20070.25750.38040.095*
C30.14219 (19)0.4004 (5)0.2300 (6)0.0595 (10)
C40.1317 (2)0.5660 (5)0.1702 (6)0.0682 (12)
H4A0.09720.58760.09680.082*
C50.1740 (3)0.6992 (7)0.2223 (7)0.0935 (17)
H5A0.16880.81130.18110.112*
C60.2244 (3)0.6671 (9)0.3359 (9)0.0995 (19)
H6A0.25200.75770.37250.119*
C70.1033 (2)0.2489 (5)0.1659 (5)0.0664 (11)
C80.0071 (2)0.1496 (5)0.0028 (5)0.0667 (12)
H8A0.01830.21720.07490.080*
H8B0.04520.09500.05180.080*
C90.0390 (3)0.0080 (5)0.0694 (6)0.0801 (14)
H9A0.02000.03270.16930.096*
H9B0.03920.09010.00380.096*
C100.1113 (3)0.0645 (6)0.0972 (7)0.0812 (15)
H10A0.13150.09210.00520.097*
H10B0.13620.03440.14020.097*
C110.1229 (2)0.2193 (5)0.2068 (5)0.0695 (12)
H11A0.17120.24810.20680.083*
H11B0.11050.18590.31430.083*
C120.08196 (19)0.3832 (4)0.1600 (4)0.0524 (9)
H12A0.08200.39550.04390.063*
C130.00874 (18)0.3694 (4)0.2188 (4)0.0493 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0725 (6)0.0733 (7)0.0686 (7)0.0204 (5)0.0016 (6)0.0118 (7)
O10.103 (3)0.0654 (18)0.158 (5)0.0333 (17)0.006 (3)0.010 (3)
O20.0634 (16)0.086 (2)0.0532 (18)0.0064 (14)0.0031 (14)0.0231 (17)
N0.0711 (19)0.0486 (16)0.0411 (16)0.0102 (15)0.0084 (15)0.0033 (15)
C10.057 (3)0.139 (5)0.098 (4)0.001 (3)0.003 (3)0.006 (4)
C20.059 (2)0.096 (3)0.083 (3)0.016 (2)0.009 (3)0.022 (3)
C30.0542 (19)0.068 (2)0.056 (2)0.0110 (18)0.015 (2)0.007 (2)
C40.083 (3)0.060 (2)0.061 (3)0.007 (2)0.014 (2)0.008 (2)
C50.120 (4)0.068 (3)0.093 (4)0.007 (3)0.040 (4)0.004 (3)
C60.066 (3)0.116 (5)0.117 (5)0.027 (3)0.029 (4)0.027 (4)
C70.078 (3)0.057 (2)0.064 (3)0.016 (2)0.020 (2)0.006 (2)
C80.104 (3)0.055 (2)0.041 (2)0.008 (2)0.009 (2)0.011 (2)
C90.141 (4)0.047 (2)0.052 (3)0.003 (3)0.000 (3)0.006 (2)
C100.115 (4)0.056 (3)0.073 (3)0.022 (2)0.009 (3)0.007 (3)
C110.083 (3)0.066 (2)0.059 (3)0.014 (2)0.006 (2)0.005 (2)
C120.065 (2)0.052 (2)0.0396 (19)0.0011 (17)0.0015 (19)0.0028 (17)
C130.062 (2)0.0466 (18)0.039 (2)0.0036 (16)0.0013 (17)0.0010 (17)
Geometric parameters (Å, º) top
Cl—C121.786 (4)C5—H5A0.9300
O1—C71.210 (5)C6—H6A0.9300
O2—C131.218 (5)C8—C91.517 (6)
N—C71.406 (5)C8—H8A0.9700
N—C81.477 (5)C8—H8B0.9700
N—C131.377 (5)C9—C101.497 (7)
C1—C61.338 (8)C9—H9A0.9700
C1—C21.357 (7)C9—H9B0.9700
C1—H1A0.9300C10—C111.518 (7)
C2—C31.390 (6)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—C41.378 (5)C11—C121.539 (5)
C3—C71.487 (6)C11—H11A0.9700
C4—C51.384 (7)C11—H11B0.9700
C4—H4A0.9300C12—C131.519 (5)
C5—C61.394 (8)C12—H12A0.9800
C7—N—C8116.3 (3)H8A—C8—H8B107.7
C13—N—C7120.7 (3)C10—C9—C8114.4 (4)
C13—N—C8121.7 (3)C10—C9—H9A108.7
C6—C1—C2121.9 (6)C8—C9—H9A108.7
C6—C1—H1A119.1C10—C9—H9B108.7
C2—C1—H1A119.1C8—C9—H9B108.7
C1—C2—C3119.4 (5)H9A—C9—H9B107.6
C1—C2—H2A120.3C9—C10—C11117.5 (4)
C3—C2—H2A120.3C9—C10—H10A107.9
C4—C3—C2120.5 (4)C11—C10—H10A107.9
C4—C3—C7120.5 (4)C9—C10—H10B107.9
C2—C3—C7118.7 (4)C11—C10—H10B107.9
C3—C4—C5118.2 (5)H10A—C10—H10B107.2
C3—C4—H4A120.9C10—C11—C12113.8 (4)
C5—C4—H4A120.9C10—C11—H11A108.8
C4—C5—C6120.6 (5)C12—C11—H11A108.8
C4—C5—H5A119.7C10—C11—H11B108.8
C6—C5—H5A119.7C12—C11—H11B108.8
C1—C6—C5119.3 (5)H11A—C11—H11B107.7
C1—C6—H6A120.3C13—C12—C11110.6 (3)
C5—C6—H6A120.3C13—C12—Cl108.1 (2)
O1—C7—N118.7 (4)C11—C12—Cl110.0 (3)
O1—C7—C3121.5 (4)C13—C12—H12A109.4
N—C7—C3119.7 (3)C11—C12—H12A109.4
N—C8—C9113.3 (3)Cl—C12—H12A109.4
N—C8—H8A108.9O2—C13—N122.5 (4)
C9—C8—H8A108.9O2—C13—C12122.0 (3)
N—C8—H8B108.9N—C13—C12115.2 (3)
C9—C8—H8B108.9
C6—C1—C2—C31.1 (8)C13—N—C8—C960.9 (5)
C1—C2—C3—C40.7 (7)C7—N—C8—C9106.4 (4)
C1—C2—C3—C7175.1 (5)N—C8—C9—C1082.1 (5)
C2—C3—C4—C50.8 (7)C8—C9—C10—C1157.4 (6)
C7—C3—C4—C5173.5 (4)C9—C10—C11—C1253.5 (6)
C3—C4—C5—C62.0 (7)C10—C11—C12—C1380.6 (5)
C2—C1—C6—C50.1 (9)C10—C11—C12—Cl160.0 (3)
C4—C5—C6—C11.6 (8)C7—N—C13—O26.3 (5)
C13—N—C7—O1145.6 (5)C8—N—C13—O2160.5 (3)
C8—N—C7—O121.9 (6)C7—N—C13—C12178.7 (3)
C13—N—C7—C338.8 (5)C8—N—C13—C1214.5 (5)
C8—N—C7—C3153.7 (4)C11—C12—C13—O294.8 (4)
C4—C3—C7—O1136.6 (5)Cl—C12—C13—O225.7 (4)
C2—C3—C7—O137.8 (7)C11—C12—C13—N80.3 (4)
C4—C3—C7—N38.9 (6)Cl—C12—C13—N159.2 (3)
C2—C3—C7—N146.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.433.335 (6)163
C12—H12A···O2ii0.982.563.319 (5)134
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H14ClNO2
Mr251.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)294
a, b, c (Å)19.564 (4), 7.6500 (15), 8.4050 (17)
V3)1257.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.917, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2413, 1229, 968
Rint0.027
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.01
No. of reflections1229
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16
Absolute structureFlack (1983), 1184 Friedel pairs
Absolute structure parameter0.07 (12)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.433.335 (6)163
C12—H12A···O2ii0.982.563.319 (5)134
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Innovation Fund for Doctoral Theses (BSCX200811), Nanjing University of Technology, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLargman, T., Sifniades, S. & Schmehl, L. J. (1979). Synth. Commun. 9, 255–259.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTull, R., O'Neill, R. C., McCarthy, E. P., Pappas, J. J. & Chemerda, J. M. (1964). J. Org. Chem. 29, 2425–2426.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds