organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thia­zol-2-ylsulfan­yl)-1-phenyl­ethanone

aChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com

(Received 10 August 2009; accepted 19 August 2009; online 12 September 2009)

In the mol­ecule of the title compound, C15H11NOS2, the 1,3-benzothia­zole ring is oriented at a dihedral angle of 6.61 (6)° with respect to the phenyl ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules in a herring-bone arrangement along the b axis and ππ contacts between the thia­zole and phenyl rings [centroid–centroid distance = 3.851 (1) Å] may further stabilize the structure.

Related literature

For applications of the title compound in organic synthesis, see: Marco et al. (1995[Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678-6679.]); Fuju et al. (1988[Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495-500.]); Ni et al. (2006[Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829-6833.]); Grossert et al. (1984[Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798-807.]); Oishi et al. (1988[Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.]); Antane et al. (2004[Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443-2449.]). For its biological activity, see: Padmavathi et al. (2008[Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NOS2

  • Mr = 285.37

  • Orthorhombic, P 21 21 21

  • a = 5.1060 (1) Å

  • b = 14.6220 (3) Å

  • c = 17.3920 (4) Å

  • V = 1298.49 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 295 K

  • 0.45 × 0.32 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.935

  • 14309 measured reflections

  • 3734 independent reflections

  • 3576 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.07

  • 3734 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1550 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.51 3.2299 (17) 135
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst. 37, 258-264.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-(Benzo[d]thiaazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl and dihalomethyl sulfones. Halomethyl and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared the title compound as a precursor for the synthesis of gem-difluoromethylene-containing heterocycle, and reported herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the benzothiazole ring is oriented with respect to the phenyl ring at a dihedral angle of 6.61 (6)°. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules in herringbone mode along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the thiazole and phenyl rings, Cg1—Cg2i, [symmetry code: (i) x - 1, y, z, where Cg1 and Cg2 are centroids of the rings (S1/N1/C1/C6/C7) and (C1-C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.851 (1) Å.

Related literature top

For applications of the title compound in organic synthesis, see: Marco et al. (1995); Fuju et al. (1988); Ni et al. (2006); Grossert et al. (1984); Oishi et al. (1988); Antane et al. (2004). For its biological activity, see: Padmavathi et al. (2008).

Experimental top

For the preparation of the title compound, sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazole (3 mmol) in ethanol (15 ml) and water (15 ml) and stirred at room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min showed the complete disappearance of the starting material. The reaction mixture was poured into HCl (1M, 100 ml) containing crushed ice (50 g). The product was filtered under vacuum and filtrate washed with ice-cold ethanol (10 ml) and water (10 ml). Recrystalization from petrol ether and filtration gave the title compound (m.p. 387-389 K). 1H NMR (400 MHz; CDCl3): 8.15-7.75 (m, 4H), 7.55-7.32 (m, 5H), 5.10 (s, 2H). 13C NMR (126 MHz; CDCl3): 194.2 (CO), 162.1, 151.8, 135.3, 134.2, 131.1, 126.7, 126.5, 124.7, 124.1, 119.8, 119.6, 37.5. Anal. Calcd. for CHNS: C, 63.13; H, 3.89; N, 4.91. Found: C, 63.07; H, 3.86; N, 4.93.

Refinement top

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2004); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
2-(1,3-Benzothiazol-2-ylsulfanyl)-1-phenylethanone top
Crystal data top
C15H11NOS2Dx = 1.460 Mg m3
Mr = 285.37Melting point: 388 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8370 reflections
a = 5.1060 (1) Åθ = 2.3–30.5°
b = 14.6220 (3) ŵ = 0.40 mm1
c = 17.3920 (4) ÅT = 295 K
V = 1298.49 (5) Å3Block, pale-yellow
Z = 40.45 × 0.32 × 0.17 mm
F(000) = 592
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3734 independent reflections
Radiation source: fine-focus sealed tube3576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 76
Tmin = 0.841, Tmax = 0.935k = 2020
14309 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.1348P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3734 reflectionsΔρmax = 0.31 e Å3
172 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1550 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C15H11NOS2V = 1298.49 (5) Å3
Mr = 285.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1060 (1) ŵ = 0.40 mm1
b = 14.6220 (3) ÅT = 295 K
c = 17.3920 (4) Å0.45 × 0.32 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3734 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3576 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.935Rint = 0.024
14309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.31 e Å3
S = 1.07Δρmin = 0.16 e Å3
3734 reflectionsAbsolute structure: Flack (1983), 1550 Friedel pairs
172 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32503 (6)0.26829 (2)0.744608 (17)0.02052 (8)
S20.01546 (7)0.10723 (2)0.799872 (17)0.02062 (8)
O10.3471 (2)0.02751 (8)0.84299 (6)0.0341 (3)
N10.3955 (2)0.19530 (7)0.87979 (6)0.0178 (2)
C10.5575 (2)0.31781 (8)0.80443 (7)0.0173 (2)
C20.7199 (3)0.39273 (9)0.79124 (8)0.0226 (3)
H2A0.71120.42520.74530.027*
C30.8936 (3)0.41738 (9)0.84818 (8)0.0240 (3)
H3A1.00560.46660.84020.029*
C40.9045 (3)0.36954 (9)0.91801 (8)0.0223 (3)
H4A1.02300.38760.95570.027*
C50.7413 (3)0.29592 (9)0.93148 (7)0.0188 (2)
H5A0.74770.26480.97810.023*
C60.5668 (2)0.26908 (9)0.87415 (6)0.0159 (2)
C70.2610 (3)0.18779 (9)0.81703 (7)0.0171 (2)
C80.0085 (3)0.05695 (9)0.89446 (7)0.0219 (2)
H8A0.17520.02790.90530.026*
H8B0.02070.10410.93270.026*
C90.2085 (3)0.01289 (9)0.89821 (8)0.0208 (3)
C100.2437 (3)0.06360 (9)0.97210 (8)0.0197 (2)
C110.4423 (3)0.12874 (9)0.97723 (9)0.0255 (3)
H11A0.55270.13880.93550.031*
C120.4758 (3)0.17854 (10)1.04421 (9)0.0296 (3)
H12A0.60960.22151.04760.036*
C130.3103 (3)0.16447 (9)1.10627 (9)0.0271 (3)
H13A0.33090.19911.15070.032*
C140.1145 (3)0.09906 (10)1.10233 (8)0.0271 (3)
H14A0.00550.08911.14430.032*
C150.0816 (3)0.04858 (10)1.03552 (8)0.0240 (3)
H15A0.04930.00441.03290.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02236 (15)0.02516 (15)0.01403 (13)0.00182 (12)0.00251 (11)0.00181 (11)
S20.02335 (15)0.02168 (14)0.01685 (13)0.00322 (13)0.00214 (12)0.00344 (11)
O10.0360 (6)0.0339 (5)0.0323 (5)0.0120 (5)0.0132 (5)0.0001 (4)
N10.0199 (5)0.0188 (5)0.0148 (5)0.0008 (4)0.0011 (4)0.0018 (4)
C10.0166 (5)0.0199 (5)0.0154 (5)0.0016 (4)0.0003 (4)0.0011 (4)
C20.0233 (6)0.0220 (6)0.0224 (6)0.0001 (5)0.0012 (5)0.0051 (5)
C30.0223 (6)0.0193 (6)0.0303 (7)0.0026 (5)0.0002 (5)0.0022 (5)
C40.0202 (6)0.0231 (6)0.0237 (6)0.0003 (5)0.0041 (5)0.0042 (5)
C50.0207 (6)0.0197 (6)0.0160 (5)0.0021 (5)0.0016 (4)0.0006 (4)
C60.0168 (5)0.0164 (5)0.0144 (5)0.0018 (5)0.0012 (4)0.0015 (4)
C70.0188 (6)0.0175 (5)0.0150 (5)0.0002 (4)0.0019 (4)0.0021 (4)
C80.0226 (6)0.0233 (6)0.0199 (5)0.0065 (6)0.0036 (5)0.0005 (5)
C90.0197 (6)0.0173 (6)0.0253 (6)0.0004 (5)0.0011 (5)0.0033 (5)
C100.0172 (6)0.0155 (5)0.0265 (6)0.0010 (4)0.0018 (5)0.0026 (5)
C110.0211 (7)0.0221 (6)0.0333 (7)0.0042 (5)0.0012 (5)0.0039 (5)
C120.0255 (7)0.0225 (6)0.0409 (8)0.0054 (6)0.0072 (6)0.0009 (6)
C130.0282 (7)0.0229 (6)0.0301 (7)0.0020 (6)0.0098 (6)0.0020 (5)
C140.0280 (7)0.0280 (7)0.0253 (6)0.0025 (6)0.0006 (5)0.0005 (6)
C150.0206 (6)0.0228 (6)0.0285 (6)0.0051 (5)0.0006 (5)0.0006 (5)
Geometric parameters (Å, º) top
S1—C11.7365 (13)C5—H5A0.9300
S1—C71.7548 (13)C8—C91.5080 (18)
S2—C71.7459 (13)C8—H8A0.9700
S2—C81.8022 (13)C8—H8B0.9700
O1—C91.2122 (16)C9—C101.4945 (19)
N1—C71.2944 (16)C10—C111.3943 (18)
N1—C61.3923 (17)C10—C151.3964 (19)
C1—C21.3929 (18)C11—C121.384 (2)
C1—C61.4073 (17)C11—H11A0.9300
C2—C31.3774 (19)C12—C131.386 (2)
C2—H2A0.9300C12—H12A0.9300
C3—C41.4026 (19)C13—C141.385 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.3813 (19)C14—C151.387 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3934 (17)C15—H15A0.9300
C1—S1—C788.68 (6)S2—C8—H8A109.8
C7—S2—C897.66 (6)C9—C8—H8B109.8
C7—N1—C6109.87 (11)S2—C8—H8B109.8
C2—C1—C6121.32 (12)H8A—C8—H8B108.3
C2—C1—S1129.51 (10)O1—C9—C10121.56 (13)
C6—C1—S1109.17 (9)O1—C9—C8120.95 (12)
C3—C2—C1118.08 (12)C10—C9—C8117.49 (11)
C3—C2—H2A121.0C11—C10—C15119.22 (13)
C1—C2—H2A121.0C11—C10—C9118.78 (12)
C2—C3—C4121.17 (13)C15—C10—C9121.99 (12)
C2—C3—H3A119.4C12—C11—C10120.20 (14)
C4—C3—H3A119.4C12—C11—H11A119.9
C5—C4—C3120.77 (12)C10—C11—H11A119.9
C5—C4—H4A119.6C11—C12—C13120.13 (13)
C3—C4—H4A119.6C11—C12—H12A119.9
C4—C5—C6118.93 (12)C13—C12—H12A119.9
C4—C5—H5A120.5C14—C13—C12120.25 (13)
C6—C5—H5A120.5C14—C13—H13A119.9
N1—C6—C5124.71 (11)C12—C13—H13A119.9
N1—C6—C1115.57 (10)C13—C14—C15119.76 (14)
C5—C6—C1119.71 (12)C13—C14—H14A120.1
N1—C7—S2125.63 (10)C15—C14—H14A120.1
N1—C7—S1116.71 (10)C14—C15—C10120.42 (13)
S2—C7—S1117.63 (7)C14—C15—H15A119.8
C9—C8—S2109.28 (9)C10—C15—H15A119.8
C9—C8—H8A109.8
C7—S1—C1—C2179.53 (13)C8—S2—C7—S1172.57 (8)
C7—S1—C1—C60.04 (9)C1—S1—C7—N10.00 (11)
C6—C1—C2—C30.86 (19)C1—S1—C7—S2177.93 (8)
S1—C1—C2—C3178.59 (11)C7—S2—C8—C9175.74 (9)
C1—C2—C3—C41.0 (2)S2—C8—C9—O10.42 (16)
C2—C3—C4—C50.2 (2)S2—C8—C9—C10179.05 (10)
C3—C4—C5—C60.7 (2)O1—C9—C10—C110.4 (2)
C7—N1—C6—C5179.59 (12)C8—C9—C10—C11179.87 (12)
C7—N1—C6—C10.07 (15)O1—C9—C10—C15178.67 (13)
C4—C5—C6—N1178.80 (12)C8—C9—C10—C150.79 (18)
C4—C5—C6—C10.84 (19)C15—C10—C11—C120.7 (2)
C2—C1—C6—N1179.62 (11)C9—C10—C11—C12178.35 (13)
S1—C1—C6—N10.07 (13)C10—C11—C12—C130.6 (2)
C2—C1—C6—C50.06 (19)C11—C12—C13—C141.5 (2)
S1—C1—C6—C5179.61 (10)C12—C13—C14—C151.0 (2)
C6—N1—C7—S2177.78 (9)C13—C14—C15—C100.3 (2)
C6—N1—C7—S10.04 (14)C11—C10—C15—C141.2 (2)
C8—S2—C7—N15.15 (13)C9—C10—C15—C14177.84 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.513.2299 (17)135
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H11NOS2
Mr285.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.1060 (1), 14.6220 (3), 17.3920 (4)
V3)1298.49 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.45 × 0.32 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.841, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14309, 3734, 3576
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.07
No. of reflections3734
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.16
Absolute structureFlack (1983), 1550 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2004 (Burla et al., 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.513.2299 (17)134.6
Symmetry code: (i) x, y+1/2, z+3/2.
 

Footnotes

Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.

Acknowledgements

We thank the University of Isfahan and the University of Malaya for supporting this work.

References

First citationAntane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst. 37, 258–264.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.  Google Scholar
First citationGrossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807.  CrossRef CAS Web of Science Google Scholar
First citationMarco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679.  CSD CrossRef CAS Web of Science Google Scholar
First citationNi, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829–6833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.  Google Scholar
First citationPadmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds