organic compounds
2-(1,3-Benzothiazol-2-ylsulfanyl)-1-phenylethanone
aChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com
In the molecule of the title compound, C15H11NOS2, the 1,3-benzothiazole ring is oriented at a dihedral angle of 6.61 (6)° with respect to the phenyl ring. In the intermolecular C—H⋯O interactions link the molecules in a herring-bone arrangement along the b axis and π–π contacts between the thiazole and phenyl rings [centroid–centroid distance = 3.851 (1) Å] may further stabilize the structure.
Related literature
For applications of the title compound in organic synthesis, see: Marco et al. (1995); Fuju et al. (1988); Ni et al. (2006); Grossert et al. (1984); Oishi et al. (1988); Antane et al. (2004). For its biological activity, see: Padmavathi et al. (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809033121/hk2756sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033121/hk2756Isup2.hkl
For the preparation of the title compound, sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazole (3 mmol) in ethanol (15 ml) and water (15 ml) and stirred at room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min showed the complete disappearance of the starting material. The reaction mixture was poured into HCl (1M, 100 ml) containing crushed ice (50 g). The product was filtered under vacuum and filtrate washed with ice-cold ethanol (10 ml) and water (10 ml). Recrystalization from petrol ether and filtration gave the title compound (m.p. 387-389 K). 1H NMR (400 MHz; CDCl3): 8.15-7.75 (m, 4H), 7.55-7.32 (m, 5H), 5.10 (s, 2H). 13C NMR (126 MHz; CDCl3): 194.2 (C═O), 162.1, 151.8, 135.3, 134.2, 131.1, 126.7, 126.5, 124.7, 124.1, 119.8, 119.6, 37.5. Anal. Calcd. for CHNS: C, 63.13; H, 3.89; N, 4.91. Found: C, 63.07; H, 3.86; N, 4.93.
H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2004); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H11NOS2 | Dx = 1.460 Mg m−3 |
Mr = 285.37 | Melting point: 388 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8370 reflections |
a = 5.1060 (1) Å | θ = 2.3–30.5° |
b = 14.6220 (3) Å | µ = 0.40 mm−1 |
c = 17.3920 (4) Å | T = 295 K |
V = 1298.49 (5) Å3 | Block, pale-yellow |
Z = 4 | 0.45 × 0.32 × 0.17 mm |
F(000) = 592 |
Bruker SMART APEXII CCD area-detector diffractometer | 3734 independent reflections |
Radiation source: fine-focus sealed tube | 3576 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→6 |
Tmin = 0.841, Tmax = 0.935 | k = −20→20 |
14309 measured reflections | l = −24→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.1348P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3734 reflections | Δρmax = 0.31 e Å−3 |
172 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1550 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (5) |
C15H11NOS2 | V = 1298.49 (5) Å3 |
Mr = 285.37 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.1060 (1) Å | µ = 0.40 mm−1 |
b = 14.6220 (3) Å | T = 295 K |
c = 17.3920 (4) Å | 0.45 × 0.32 × 0.17 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3734 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3576 reflections with I > 2σ(I) |
Tmin = 0.841, Tmax = 0.935 | Rint = 0.024 |
14309 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 0.31 e Å−3 |
S = 1.07 | Δρmin = −0.16 e Å−3 |
3734 reflections | Absolute structure: Flack (1983), 1550 Friedel pairs |
172 parameters | Absolute structure parameter: 0.01 (5) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.32503 (6) | 0.26829 (2) | 0.744608 (17) | 0.02052 (8) | |
S2 | 0.01546 (7) | 0.10723 (2) | 0.799872 (17) | 0.02062 (8) | |
O1 | −0.3471 (2) | −0.02751 (8) | 0.84299 (6) | 0.0341 (3) | |
N1 | 0.3955 (2) | 0.19530 (7) | 0.87979 (6) | 0.0178 (2) | |
C1 | 0.5575 (2) | 0.31781 (8) | 0.80443 (7) | 0.0173 (2) | |
C2 | 0.7199 (3) | 0.39273 (9) | 0.79124 (8) | 0.0226 (3) | |
H2A | 0.7112 | 0.4252 | 0.7453 | 0.027* | |
C3 | 0.8936 (3) | 0.41738 (9) | 0.84818 (8) | 0.0240 (3) | |
H3A | 1.0056 | 0.4666 | 0.8402 | 0.029* | |
C4 | 0.9045 (3) | 0.36954 (9) | 0.91801 (8) | 0.0223 (3) | |
H4A | 1.0230 | 0.3876 | 0.9557 | 0.027* | |
C5 | 0.7413 (3) | 0.29592 (9) | 0.93148 (7) | 0.0188 (2) | |
H5A | 0.7477 | 0.2648 | 0.9781 | 0.023* | |
C6 | 0.5668 (2) | 0.26908 (9) | 0.87415 (6) | 0.0159 (2) | |
C7 | 0.2610 (3) | 0.18779 (9) | 0.81703 (7) | 0.0171 (2) | |
C8 | 0.0085 (3) | 0.05695 (9) | 0.89446 (7) | 0.0219 (2) | |
H8A | 0.1752 | 0.0279 | 0.9053 | 0.026* | |
H8B | −0.0207 | 0.1041 | 0.9327 | 0.026* | |
C9 | −0.2085 (3) | −0.01289 (9) | 0.89821 (8) | 0.0208 (3) | |
C10 | −0.2437 (3) | −0.06360 (9) | 0.97210 (8) | 0.0197 (2) | |
C11 | −0.4423 (3) | −0.12874 (9) | 0.97723 (9) | 0.0255 (3) | |
H11A | −0.5527 | −0.1388 | 0.9355 | 0.031* | |
C12 | −0.4758 (3) | −0.17854 (10) | 1.04421 (9) | 0.0296 (3) | |
H12A | −0.6096 | −0.2215 | 1.0476 | 0.036* | |
C13 | −0.3103 (3) | −0.16447 (9) | 1.10627 (9) | 0.0271 (3) | |
H13A | −0.3309 | −0.1991 | 1.1507 | 0.032* | |
C14 | −0.1145 (3) | −0.09906 (10) | 1.10233 (8) | 0.0271 (3) | |
H14A | −0.0055 | −0.0891 | 1.1443 | 0.032* | |
C15 | −0.0816 (3) | −0.04858 (10) | 1.03552 (8) | 0.0240 (3) | |
H15A | 0.0493 | −0.0044 | 1.0329 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02236 (15) | 0.02516 (15) | 0.01403 (13) | −0.00182 (12) | −0.00251 (11) | 0.00181 (11) |
S2 | 0.02335 (15) | 0.02168 (14) | 0.01685 (13) | −0.00322 (13) | −0.00214 (12) | −0.00344 (11) |
O1 | 0.0360 (6) | 0.0339 (5) | 0.0323 (5) | −0.0120 (5) | −0.0132 (5) | 0.0001 (4) |
N1 | 0.0199 (5) | 0.0188 (5) | 0.0148 (5) | −0.0008 (4) | 0.0011 (4) | −0.0018 (4) |
C1 | 0.0166 (5) | 0.0199 (5) | 0.0154 (5) | 0.0016 (4) | −0.0003 (4) | −0.0011 (4) |
C2 | 0.0233 (6) | 0.0220 (6) | 0.0224 (6) | 0.0001 (5) | 0.0012 (5) | 0.0051 (5) |
C3 | 0.0223 (6) | 0.0193 (6) | 0.0303 (7) | −0.0026 (5) | −0.0002 (5) | 0.0022 (5) |
C4 | 0.0202 (6) | 0.0231 (6) | 0.0237 (6) | 0.0003 (5) | −0.0041 (5) | −0.0042 (5) |
C5 | 0.0207 (6) | 0.0197 (6) | 0.0160 (5) | 0.0021 (5) | −0.0016 (4) | −0.0006 (4) |
C6 | 0.0168 (5) | 0.0164 (5) | 0.0144 (5) | 0.0018 (5) | 0.0012 (4) | −0.0015 (4) |
C7 | 0.0188 (6) | 0.0175 (5) | 0.0150 (5) | 0.0002 (4) | 0.0019 (4) | −0.0021 (4) |
C8 | 0.0226 (6) | 0.0233 (6) | 0.0199 (5) | −0.0065 (6) | −0.0036 (5) | 0.0005 (5) |
C9 | 0.0197 (6) | 0.0173 (6) | 0.0253 (6) | −0.0004 (5) | −0.0011 (5) | −0.0033 (5) |
C10 | 0.0172 (6) | 0.0155 (5) | 0.0265 (6) | 0.0010 (4) | 0.0018 (5) | −0.0026 (5) |
C11 | 0.0211 (7) | 0.0221 (6) | 0.0333 (7) | −0.0042 (5) | −0.0012 (5) | −0.0039 (5) |
C12 | 0.0255 (7) | 0.0225 (6) | 0.0409 (8) | −0.0054 (6) | 0.0072 (6) | −0.0009 (6) |
C13 | 0.0282 (7) | 0.0229 (6) | 0.0301 (7) | 0.0020 (6) | 0.0098 (6) | 0.0020 (5) |
C14 | 0.0280 (7) | 0.0280 (7) | 0.0253 (6) | −0.0025 (6) | −0.0006 (5) | 0.0005 (6) |
C15 | 0.0206 (6) | 0.0228 (6) | 0.0285 (6) | −0.0051 (5) | −0.0006 (5) | 0.0006 (5) |
S1—C1 | 1.7365 (13) | C5—H5A | 0.9300 |
S1—C7 | 1.7548 (13) | C8—C9 | 1.5080 (18) |
S2—C7 | 1.7459 (13) | C8—H8A | 0.9700 |
S2—C8 | 1.8022 (13) | C8—H8B | 0.9700 |
O1—C9 | 1.2122 (16) | C9—C10 | 1.4945 (19) |
N1—C7 | 1.2944 (16) | C10—C11 | 1.3943 (18) |
N1—C6 | 1.3923 (17) | C10—C15 | 1.3964 (19) |
C1—C2 | 1.3929 (18) | C11—C12 | 1.384 (2) |
C1—C6 | 1.4073 (17) | C11—H11A | 0.9300 |
C2—C3 | 1.3774 (19) | C12—C13 | 1.386 (2) |
C2—H2A | 0.9300 | C12—H12A | 0.9300 |
C3—C4 | 1.4026 (19) | C13—C14 | 1.385 (2) |
C3—H3A | 0.9300 | C13—H13A | 0.9300 |
C4—C5 | 1.3813 (19) | C14—C15 | 1.387 (2) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C6 | 1.3934 (17) | C15—H15A | 0.9300 |
C1—S1—C7 | 88.68 (6) | S2—C8—H8A | 109.8 |
C7—S2—C8 | 97.66 (6) | C9—C8—H8B | 109.8 |
C7—N1—C6 | 109.87 (11) | S2—C8—H8B | 109.8 |
C2—C1—C6 | 121.32 (12) | H8A—C8—H8B | 108.3 |
C2—C1—S1 | 129.51 (10) | O1—C9—C10 | 121.56 (13) |
C6—C1—S1 | 109.17 (9) | O1—C9—C8 | 120.95 (12) |
C3—C2—C1 | 118.08 (12) | C10—C9—C8 | 117.49 (11) |
C3—C2—H2A | 121.0 | C11—C10—C15 | 119.22 (13) |
C1—C2—H2A | 121.0 | C11—C10—C9 | 118.78 (12) |
C2—C3—C4 | 121.17 (13) | C15—C10—C9 | 121.99 (12) |
C2—C3—H3A | 119.4 | C12—C11—C10 | 120.20 (14) |
C4—C3—H3A | 119.4 | C12—C11—H11A | 119.9 |
C5—C4—C3 | 120.77 (12) | C10—C11—H11A | 119.9 |
C5—C4—H4A | 119.6 | C11—C12—C13 | 120.13 (13) |
C3—C4—H4A | 119.6 | C11—C12—H12A | 119.9 |
C4—C5—C6 | 118.93 (12) | C13—C12—H12A | 119.9 |
C4—C5—H5A | 120.5 | C14—C13—C12 | 120.25 (13) |
C6—C5—H5A | 120.5 | C14—C13—H13A | 119.9 |
N1—C6—C5 | 124.71 (11) | C12—C13—H13A | 119.9 |
N1—C6—C1 | 115.57 (10) | C13—C14—C15 | 119.76 (14) |
C5—C6—C1 | 119.71 (12) | C13—C14—H14A | 120.1 |
N1—C7—S2 | 125.63 (10) | C15—C14—H14A | 120.1 |
N1—C7—S1 | 116.71 (10) | C14—C15—C10 | 120.42 (13) |
S2—C7—S1 | 117.63 (7) | C14—C15—H15A | 119.8 |
C9—C8—S2 | 109.28 (9) | C10—C15—H15A | 119.8 |
C9—C8—H8A | 109.8 | ||
C7—S1—C1—C2 | 179.53 (13) | C8—S2—C7—S1 | −172.57 (8) |
C7—S1—C1—C6 | 0.04 (9) | C1—S1—C7—N1 | 0.00 (11) |
C6—C1—C2—C3 | 0.86 (19) | C1—S1—C7—S2 | 177.93 (8) |
S1—C1—C2—C3 | −178.59 (11) | C7—S2—C8—C9 | 175.74 (9) |
C1—C2—C3—C4 | −1.0 (2) | S2—C8—C9—O1 | −0.42 (16) |
C2—C3—C4—C5 | 0.2 (2) | S2—C8—C9—C10 | 179.05 (10) |
C3—C4—C5—C6 | 0.7 (2) | O1—C9—C10—C11 | −0.4 (2) |
C7—N1—C6—C5 | −179.59 (12) | C8—C9—C10—C11 | −179.87 (12) |
C7—N1—C6—C1 | 0.07 (15) | O1—C9—C10—C15 | 178.67 (13) |
C4—C5—C6—N1 | 178.80 (12) | C8—C9—C10—C15 | −0.79 (18) |
C4—C5—C6—C1 | −0.84 (19) | C15—C10—C11—C12 | −0.7 (2) |
C2—C1—C6—N1 | −179.62 (11) | C9—C10—C11—C12 | 178.35 (13) |
S1—C1—C6—N1 | −0.07 (13) | C10—C11—C12—C13 | −0.6 (2) |
C2—C1—C6—C5 | 0.06 (19) | C11—C12—C13—C14 | 1.5 (2) |
S1—C1—C6—C5 | 179.61 (10) | C12—C13—C14—C15 | −1.0 (2) |
C6—N1—C7—S2 | −177.78 (9) | C13—C14—C15—C10 | −0.3 (2) |
C6—N1—C7—S1 | −0.04 (14) | C11—C10—C15—C14 | 1.2 (2) |
C8—S2—C7—N1 | 5.15 (13) | C9—C10—C15—C14 | −177.84 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1i | 0.93 | 2.51 | 3.2299 (17) | 135 |
Symmetry code: (i) −x, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C15H11NOS2 |
Mr | 285.37 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 5.1060 (1), 14.6220 (3), 17.3920 (4) |
V (Å3) | 1298.49 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.45 × 0.32 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.841, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14309, 3734, 3576 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.068, 1.07 |
No. of reflections | 3734 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.16 |
Absolute structure | Flack (1983), 1550 Friedel pairs |
Absolute structure parameter | 0.01 (5) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2004 (Burla et al., 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1i | 0.93 | 2.51 | 3.2299 (17) | 134.6 |
Symmetry code: (i) −x, y+1/2, −z+3/2. |
Footnotes
‡Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.
Acknowledgements
We thank the University of Isfahan and the University of Malaya for supporting this work.
References
Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449. Web of Science CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst. 37, 258–264. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500. Google Scholar
Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807. CrossRef CAS Web of Science Google Scholar
Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679. CSD CrossRef CAS Web of Science Google Scholar
Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829–6833. Web of Science CrossRef PubMed CAS Google Scholar
Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359. Google Scholar
Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-(Benzo[d]thiaazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl and dihalomethyl sulfones. Halomethyl and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared the title compound as a precursor for the synthesis of gem-difluoromethylene-containing heterocycle, and reported herein its crystal structure.
In the molecule of the title compound, (Fig. 1), the benzothiazole ring is oriented with respect to the phenyl ring at a dihedral angle of 6.61 (6)°. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules in herringbone mode along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the thiazole and phenyl rings, Cg1—Cg2i, [symmetry code: (i) x - 1, y, z, where Cg1 and Cg2 are centroids of the rings (S1/N1/C1/C6/C7) and (C1-C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.851 (1) Å.