organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-1-(3-fluoro­benz­yl­oxy)-4-nitro­benzene

aYibin Vocational & Technical College, Si chuan, People's Republic of China
*Correspondence e-mail: cnyhl@tom.com

(Received 14 August 2009; accepted 27 August 2009; online 5 September 2009)

In the title compound, C13H9ClFNO3, the benzene rings are oriented at a dihedral angle of 41.23 (5)°. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules in a herring-bone arrangement along the b axis and weak ππ contacts between the benzene rings [centroid–centroid distance = 3.881 (1) Å] may further stabilize the structure.

Related literature

The title compound is a dual ErbB-1/ErbB-2 tyrosine kinase inhibitor, see: Petrov et al. (2006[Petrov, K. G., Zhang, Y. M., Carter, M., Cockerill, G. S., Dickerson, S., Gauthier, C. A., Guo, Y., Mook, R. A., Rusnak, D. W., Walker, A. L., Wood, E. R. & Lackey, K. E. (2006). Bioorg. Med. Chem. Lett. 16, 4686-4691.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClFNO3

  • Mr = 281.66

  • Monoclinic, P 21 /c

  • a = 8.3290 (17) Å

  • b = 12.640 (3) Å

  • c = 11.875 (2) Å

  • β = 96.94 (3)°

  • V = 1241.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.968

  • 2411 measured reflections

  • 2248 independent reflections

  • 1340 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.01

  • 2248 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.97 2.49 3.423 (4) 162
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound is one kind of important pharmaceutical intermediates, which is dual ErbB-1/ErbB-2 tyrosine kinase inhibitior (Petrov et al., 2006). We report herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar and they are oriented at a dihedral angle of A/B = 41.23 (5)°. Atom C7 is -0.061 (3) Å away from the plane of ring A, while atoms Cl, O1, N and C7 are -0.007 (3), 0.001 (3), 0.018 (3) and 0.029 (3) Å away from the plane of ring B, respectively.

In the crystal structure, intermolecular C-H···O interactions link the molecules in herring-bone arrangement along the b axis and ππ contact between the benzene rings, Cg1—Cg2i, [symmetry code: (i) x, 1/2 - y, 1/2 + z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C8-C13), respectively] may further stabilize the structure, with centroid-centroid distance of 3.881 (1) Å.

Related literature top

The title compound is a dual ErbB-1/ErbB-2 tyrosine kinase inhibitor, see: Petrov et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, in the presence of sodium carbonate (10 g), 2-chloro-4-nitrophenol (1 mmol) and 1-(bromomethyl)-3-fluorobenzene (1 mmol) in acetonitrile (25 ml) were stirred at 313 K for 8 h. Sodium carbonate was filtered off and the filtrate was washed with brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product, which was crystallized from ethyl acetate to give the title compound. Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.1 g) in ethyl acetate (10 ml) and evaporating the solvent slowly at room temperature for 3 d.

Refinement top

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
2-Chloro-1-(3-fluorobenzyloxy)-4-nitrobenzene top
Crystal data top
C13H9ClFNO3F(000) = 576
Mr = 281.66Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.3290 (17) Åθ = 9–12°
b = 12.640 (3) ŵ = 0.32 mm1
c = 11.875 (2) ÅT = 294 K
β = 96.94 (3)°Block, yellow
V = 1241.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1340 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.909, Tmax = 0.968l = 1414
2411 measured reflections3 standard reflections every 120 min
2248 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
2248 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H9ClFNO3V = 1241.0 (4) Å3
Mr = 281.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3290 (17) ŵ = 0.32 mm1
b = 12.640 (3) ÅT = 294 K
c = 11.875 (2) Å0.30 × 0.20 × 0.10 mm
β = 96.94 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1340 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.909, Tmax = 0.9683 standard reflections every 120 min
2411 measured reflections intensity decay: 1%
2248 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2248 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.81771 (13)0.51262 (7)0.07511 (8)0.0802 (4)
F0.4335 (3)1.00189 (17)0.29984 (19)0.0996 (8)
O10.6878 (3)0.72025 (15)0.07000 (17)0.0582 (6)
O21.1588 (3)0.5447 (2)0.4720 (2)0.0846 (8)
O31.0836 (4)0.6867 (3)0.5501 (2)0.1058 (10)
N1.0804 (3)0.6268 (3)0.4700 (3)0.0694 (8)
C10.3405 (4)0.8293 (3)0.2781 (3)0.0670 (10)
H1A0.28010.83250.34920.080*
C20.4320 (4)0.9129 (3)0.2358 (3)0.0629 (9)
C30.5233 (4)0.9117 (2)0.1320 (3)0.0550 (8)
H3A0.58580.97000.10690.066*
C40.5210 (4)0.8224 (2)0.0653 (3)0.0513 (8)
C50.4296 (4)0.7364 (3)0.1061 (3)0.0630 (9)
H5A0.42790.67560.06210.076*
C60.3407 (4)0.7401 (3)0.2118 (3)0.0707 (10)
H6A0.28010.68150.23860.085*
C70.6137 (4)0.8219 (2)0.0507 (3)0.0587 (9)
H7A0.69590.87670.05640.070*
H7B0.54150.83580.10730.070*
C80.7811 (4)0.7033 (2)0.1694 (3)0.0492 (8)
C90.8086 (4)0.7766 (2)0.2567 (3)0.0564 (8)
H9A0.76090.84310.24880.068*
C100.9064 (4)0.7510 (3)0.3551 (3)0.0597 (9)
H10A0.92500.80020.41350.072*
C110.9755 (4)0.6531 (2)0.3662 (3)0.0531 (8)
C120.9495 (4)0.5787 (3)0.2808 (3)0.0575 (8)
H12A0.99700.51220.28960.069*
C130.8532 (4)0.6039 (2)0.1836 (3)0.0530 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1074 (8)0.0574 (6)0.0736 (7)0.0078 (5)0.0026 (5)0.0116 (4)
F0.135 (2)0.0791 (15)0.0789 (15)0.0098 (14)0.0083 (14)0.0259 (11)
O10.0683 (14)0.0475 (12)0.0568 (14)0.0075 (11)0.0005 (11)0.0012 (10)
O20.0635 (17)0.094 (2)0.0931 (19)0.0152 (16)0.0032 (14)0.0228 (16)
O30.109 (2)0.124 (3)0.0751 (19)0.014 (2)0.0258 (17)0.0135 (19)
N0.0542 (18)0.083 (2)0.069 (2)0.0014 (18)0.0016 (16)0.0110 (18)
C10.061 (2)0.083 (3)0.055 (2)0.011 (2)0.0022 (17)0.0035 (19)
C20.067 (2)0.060 (2)0.062 (2)0.0124 (19)0.0055 (18)0.0090 (18)
C30.0521 (19)0.0494 (18)0.063 (2)0.0055 (15)0.0063 (16)0.0019 (15)
C40.0482 (18)0.0511 (18)0.0552 (19)0.0061 (15)0.0087 (15)0.0009 (15)
C50.067 (2)0.057 (2)0.065 (2)0.0028 (18)0.0075 (18)0.0064 (17)
C60.061 (2)0.075 (2)0.074 (3)0.0052 (19)0.001 (2)0.008 (2)
C70.068 (2)0.0494 (19)0.057 (2)0.0020 (16)0.0005 (17)0.0031 (15)
C80.0461 (18)0.0499 (18)0.0515 (18)0.0016 (15)0.0054 (15)0.0030 (15)
C90.062 (2)0.0480 (17)0.060 (2)0.0025 (16)0.0068 (17)0.0020 (16)
C100.060 (2)0.063 (2)0.056 (2)0.0072 (17)0.0062 (17)0.0032 (16)
C110.0446 (18)0.0566 (19)0.058 (2)0.0012 (16)0.0055 (15)0.0078 (16)
C120.049 (2)0.057 (2)0.068 (2)0.0068 (16)0.0107 (17)0.0077 (17)
C130.0534 (19)0.0518 (19)0.0548 (19)0.0026 (16)0.0096 (16)0.0017 (15)
Geometric parameters (Å, º) top
Cl—C131.728 (3)C5—C61.379 (5)
F—C21.359 (4)C5—H5A0.9300
O1—C71.432 (3)C6—H6A0.9300
O1—C81.350 (4)C7—H7A0.9700
N—O21.225 (4)C7—H7B0.9700
N—O31.214 (4)C8—C91.388 (4)
N—C111.460 (4)C8—C131.394 (4)
C1—C21.363 (5)C9—C101.380 (5)
C1—C61.375 (4)C9—H9A0.9300
C1—H1A0.9300C10—C111.366 (4)
C2—C31.367 (4)C10—H10A0.9300
C3—C41.381 (4)C11—C121.380 (4)
C3—H3A0.9300C12—C131.361 (4)
C4—C51.382 (4)C12—H12A0.9300
C4—C71.496 (4)
C8—O1—C7118.3 (2)O1—C7—H7A110.0
O2—N—C11118.2 (3)C4—C7—H7A110.0
O3—N—O2123.5 (3)O1—C7—H7B110.0
O3—N—C11118.3 (3)C4—C7—H7B110.0
C2—C1—C6117.6 (3)H7A—C7—H7B108.4
C2—C1—H1A121.2O1—C8—C9124.9 (3)
C6—C1—H1A121.2O1—C8—C13116.3 (3)
F—C2—C1118.5 (3)C9—C8—C13118.8 (3)
F—C2—C3118.1 (3)C10—C9—C8120.3 (3)
C1—C2—C3123.3 (3)C10—C9—H9A119.9
C2—C3—C4118.7 (3)C8—C9—H9A119.9
C2—C3—H3A120.6C11—C10—C9119.5 (3)
C4—C3—H3A120.6C11—C10—H10A120.3
C3—C4—C5119.2 (3)C9—C10—H10A120.3
C3—C4—C7119.4 (3)C10—C11—C12121.3 (3)
C5—C4—C7121.4 (3)C10—C11—N119.3 (3)
C6—C5—C4120.3 (3)C12—C11—N119.4 (3)
C6—C5—H5A119.8C13—C12—C11119.2 (3)
C4—C5—H5A119.8C13—C12—H12A120.4
C1—C6—C5120.8 (3)C11—C12—H12A120.4
C1—C6—H6A119.6C12—C13—C8120.9 (3)
C5—C6—H6A119.6C12—C13—Cl120.4 (3)
O1—C7—C4108.4 (2)C8—C13—Cl118.6 (2)
C6—C1—C2—F180.0 (3)C13—C8—C9—C100.3 (5)
C6—C1—C2—C30.3 (5)C8—C9—C10—C110.2 (5)
F—C2—C3—C4179.1 (3)C9—C10—C11—C120.1 (5)
C1—C2—C3—C41.2 (5)C9—C10—C11—N179.3 (3)
C2—C3—C4—C51.3 (5)O3—N—C11—C1011.0 (5)
C2—C3—C4—C7177.0 (3)O2—N—C11—C10170.0 (3)
C3—C4—C5—C60.5 (5)O3—N—C11—C12169.6 (3)
C7—C4—C5—C6177.7 (3)O2—N—C11—C129.5 (4)
C2—C1—C6—C50.5 (5)C10—C11—C12—C130.2 (5)
C4—C5—C6—C10.4 (5)N—C11—C12—C13179.2 (3)
C8—O1—C7—C4178.5 (2)C11—C12—C13—C80.1 (4)
C3—C4—C7—O1140.2 (3)C11—C12—C13—Cl179.9 (2)
C5—C4—C7—O141.6 (4)O1—C8—C13—C12179.9 (3)
C7—O1—C8—C91.5 (4)C9—C8—C13—C120.2 (4)
C7—O1—C8—C13178.8 (3)O1—C8—C13—Cl0.1 (4)
O1—C8—C9—C10180.0 (3)C9—C8—C13—Cl179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.493.423 (4)162
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClFNO3
Mr281.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.3290 (17), 12.640 (3), 11.875 (2)
β (°) 96.94 (3)
V3)1241.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
2411, 2248, 1340
Rint0.028
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.01
No. of reflections2248
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.493.423 (4)162
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPetrov, K. G., Zhang, Y. M., Carter, M., Cockerill, G. S., Dickerson, S., Gauthier, C. A., Guo, Y., Mook, R. A., Rusnak, D. W., Walker, A. L., Wood, E. R. & Lackey, K. E. (2006). Bioorg. Med. Chem. Lett. 16, 4686–4691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds