organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl­anilinium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 27 August 2009; accepted 28 August 2009; online 9 September 2009)

In the title compound, C9H14N+·Br, an intra­molecular N—H⋯Br inter­action links the anion to the cation. In the crystal structure, inter­molecular N—H⋯Br inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Lemmerer & Billing (2007[Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929-o931.]); Long et al. (2007[Long, S., Siegler, M. & Li, T. (2007). Acta Cryst. E63, o3080.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·Br

  • Mr = 216.11

  • Orthorhombic, P b c a

  • a = 10.399 (2) Å

  • b = 18.720 (4) Å

  • c = 10.282 (2) Å

  • V = 2001.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.05 mm−1

  • T = 294 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.88, Tmax = 1.000

  • 18944 measured reflections

  • 2292 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.00

  • 2292 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.84 (5) 2.58 (5) 3.376 (4) 157 (4)
N1—H1B⋯Br1 0.94 (6) 2.47 (6) 3.391 (4) 168 (4)
N1—H1C⋯Br1ii 1.01 (5) 2.32 (5) 3.292 (4) 162 (4)
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound is reported herein as part of a study of 2,4,6-trimethylanilinium halide salts. The other halide salts have been reported, previously (Lemmerer & Billing, 2007; Long et al., 2007).

The asymmetric unit of the title compound, (Fig. 1), contains one 2,4,6 -trimethylbenzenaminium cation and one bromide anion. The intramolecular N-H···Br interaction (Table 1) links the anion to the cation.

In the crystal structure, intra- and intermolecular N-H···Br interactions (Table 1) link the molecules into a three-dimensional network.

Related literature top

For related structures, see: Lemmerer & Billing (2007); Long et al. (2007).

Experimental top

For the preparation of the title compound, 2,4,6-trimethylaniline (3 mmol) was dissolved in ethanol (6 ml), and concentrated hydrobromic acid was added dropwise to dissolve the solid phase persisting in a mixture of bismuth tricbromide (3 mmol) and water (5 ml). The two solutions were then mixed and stirred for 15 min. The resulting precipitate was filtered off and dissolved in hydrobromic acid. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement top

Atoms H1A, H1B and H1C (for NH3) are located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
2,4,6-Trimethylanilinium bromide top
Crystal data top
C9H14N+·BrF(000) = 880
Mr = 216.11Dx = 1.434 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1647 reflections
a = 10.399 (2) Åθ = 3.0–27.6°
b = 18.720 (4) ŵ = 4.05 mm1
c = 10.282 (2) ÅT = 294 K
V = 2001.6 (7) Å3Prism, colorless
Z = 80.2 × 0.2 × 0.2 mm
Data collection top
Rigaku SCXmini
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2424
Tmin = 0.88, Tmax = 1.000l = 1313
18944 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0437P)2 + 2.8318P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2292 reflectionsΔρmax = 0.37 e Å3
113 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (8)
Crystal data top
C9H14N+·BrV = 2001.6 (7) Å3
Mr = 216.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.399 (2) ŵ = 4.05 mm1
b = 18.720 (4) ÅT = 294 K
c = 10.282 (2) Å0.2 × 0.2 × 0.2 mm
Data collection top
Rigaku SCXmini
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1627 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 1.000Rint = 0.099
18944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.37 e Å3
2292 reflectionsΔρmin = 0.41 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10008 (4)0.00542 (2)0.69604 (4)0.0471 (2)
N10.1859 (4)0.0634 (2)0.3959 (4)0.0420 (9)
H1A0.113 (4)0.058 (2)0.361 (5)0.053 (14)*
H1B0.171 (5)0.042 (3)0.477 (6)0.085 (18)*
H1C0.249 (4)0.033 (3)0.346 (4)0.052 (12)*
C10.2218 (4)0.1388 (2)0.4055 (4)0.0364 (9)
C20.3168 (4)0.1578 (2)0.4945 (4)0.0466 (11)
C30.3457 (4)0.2299 (3)0.5046 (4)0.0563 (13)
H3A0.40630.24400.56590.068*
C40.2896 (5)0.2813 (3)0.4289 (5)0.0545 (12)
C50.2005 (4)0.2595 (2)0.3376 (5)0.0523 (11)
H5A0.16300.29350.28370.063*
C60.1650 (4)0.1883 (2)0.3237 (4)0.0416 (10)
C70.3892 (4)0.1028 (3)0.5721 (5)0.0747 (17)
H7A0.35650.05610.55250.112*
H7B0.37860.11230.66330.112*
H7C0.47890.10500.55030.112*
C80.3257 (6)0.3597 (3)0.4419 (6)0.0892 (19)
H8A0.27660.38740.38110.134*
H8B0.41570.36550.42400.134*
H8C0.30770.37560.52870.134*
C90.0696 (5)0.1680 (3)0.2198 (5)0.0656 (14)
H9A0.04220.21020.17440.098*
H9B0.00350.14540.25920.098*
H9C0.10930.13560.15960.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0419 (3)0.0519 (3)0.0473 (3)0.00391 (19)0.00179 (18)0.0025 (2)
N10.035 (2)0.048 (2)0.043 (2)0.0016 (17)0.0005 (18)0.0009 (18)
C10.033 (2)0.041 (2)0.035 (2)0.0008 (17)0.0048 (17)0.0004 (18)
C20.037 (2)0.065 (3)0.038 (2)0.011 (2)0.0016 (19)0.005 (2)
C30.052 (3)0.078 (3)0.039 (3)0.027 (3)0.001 (2)0.012 (2)
C40.061 (3)0.050 (3)0.053 (3)0.016 (2)0.012 (2)0.006 (2)
C50.050 (2)0.049 (3)0.058 (3)0.001 (2)0.002 (2)0.010 (2)
C60.035 (2)0.050 (2)0.040 (2)0.0016 (19)0.0005 (18)0.0021 (19)
C70.050 (3)0.100 (4)0.074 (4)0.025 (3)0.024 (3)0.037 (3)
C80.108 (5)0.059 (3)0.101 (5)0.031 (3)0.005 (4)0.016 (3)
C90.060 (3)0.078 (3)0.058 (3)0.018 (3)0.024 (2)0.018 (3)
Geometric parameters (Å, º) top
N1—C11.464 (5)C6—C11.383 (5)
N1—H1A0.84 (5)C6—C51.391 (6)
N1—H1B0.94 (6)C6—C91.507 (6)
N1—H1C1.01 (5)C7—H7A0.9600
C2—C31.387 (6)C7—H7B0.9600
C2—C11.393 (5)C7—H7C0.9600
C2—C71.504 (6)C8—H8A0.9600
C3—H3A0.9300C8—H8B0.9600
C4—C31.368 (6)C8—H8C0.9600
C4—C81.521 (7)C9—H9A0.9600
C5—C41.380 (6)C9—H9B0.9600
C5—H5A0.9300C9—H9C0.9600
C1—N1—H1A112 (3)C1—C6—C5117.8 (4)
C1—N1—H1B114 (3)C1—C6—C9122.9 (4)
C1—N1—H1C114 (3)C5—C6—C9119.3 (4)
H1A—N1—H1B100 (4)C2—C7—H7A109.5
H1A—N1—H1C108 (4)C2—C7—H7B109.5
H1B—N1—H1C108 (4)C2—C7—H7C109.5
C2—C1—N1118.1 (4)H7A—C7—H7B109.5
C6—C1—N1119.7 (4)H7A—C7—H7C109.5
C6—C1—C2122.1 (4)H7B—C7—H7C109.5
C1—C2—C7122.0 (4)C4—C8—H8A109.5
C3—C2—C1116.8 (4)C4—C8—H8B109.5
C3—C2—C7121.1 (4)C4—C8—H8C109.5
C2—C3—H3A118.3H8A—C8—H8B109.5
C4—C3—C2123.3 (4)H8A—C8—H8C109.5
C4—C3—H3A118.3H8B—C8—H8C109.5
C3—C4—C5117.8 (4)C6—C9—H9A109.5
C3—C4—C8121.5 (5)C6—C9—H9B109.5
C5—C4—C8120.7 (5)C6—C9—H9C109.5
C4—C5—C6122.0 (4)H9A—C9—H9B109.5
C4—C5—H5A119.0H9A—C9—H9C109.5
C6—C5—H5A119.0H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.84 (5)2.58 (5)3.376 (4)157 (4)
N1—H1B···Br10.94 (6)2.47 (6)3.391 (4)168 (4)
N1—H1C···Br1ii1.01 (5)2.32 (5)3.292 (4)162 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC9H14N+·Br
Mr216.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)10.399 (2), 18.720 (4), 10.282 (2)
V3)2001.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)4.05
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.88, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18944, 2292, 1627
Rint0.099
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.00
No. of reflections2292
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.84 (5)2.58 (5)3.376 (4)157 (4)
N1—H1B···Br10.94 (6)2.47 (6)3.391 (4)168 (4)
N1—H1C···Br1ii1.01 (5)2.32 (5)3.292 (4)162 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z1/2.
 

References

First citationLemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929–o931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLong, S., Siegler, M. & Li, T. (2007). Acta Cryst. E63, o3080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds