organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ammonio­naphthalene-2-sulfonate

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com

(Received 28 August 2009; accepted 9 September 2009; online 19 September 2009)

In the mol­ecule of the zwitterionic title compound, C10H9NO3S, an intra­molecular N—H⋯O hydrogen bond results in the formation of an almost planar six-membered ring (r.m.s daviation = 0.0150 Å), which is oriented at a dihedral angle of 1.63 (3)° with respect to the naphthalene ring system. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network.

Related literature

For general background to the use of amino naphthalene sulfonic acid derivatives as a inter­mediates for the syntheses of azo dyes, see: O'Neil (2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 410. Whitehouse Station, New Jersey: Merck & Co.]). For related structures, see: Arshad et al. (2008a[Arshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008a). Acta Cryst. E64, m994.],b[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o2045.]); Genther et al. (2007[Genther, D. J., Squattrito, P. J., Kirschbaum, K., Yearley, E. J. & Pinkerton, A. A. (2007). Acta Cryst. C63, m604-m609.]); Shafiq et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o389.]); Smith et al. (2004[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2004). Acta Cryst. E60, o2014-o2016.], 2009[Smith, G., Wermuth, U. D. & Young, D. J. (2009). Acta Cryst. E65, o2110.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3S

  • Mr = 223.24

  • Orthorhombic, P b c a

  • a = 9.4337 (3) Å

  • b = 10.6359 (4) Å

  • c = 18.6775 (6) Å

  • V = 1874.02 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.29 × 0.21 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.943

  • 10742 measured reflections

  • 2326 independent reflections

  • 1763 reflections with I > 2/s(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.03

  • 2326 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 1.94 (2) 2.762 (2) 160.4 (18)
N1—H2N⋯O2 0.91 (2) 1.83 (2) 2.651 (2) 149.0 (19)
N1—H3N⋯O3ii 0.87 (3) 2.14 (3) 2.982 (2) 162 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound is a zwitterion of 1-amino-2-naphthalene sulfonic acid (o-naphthionic acid). Amino naphthalene sulfonic acid derivatives have been used as an intermediate for the syntheses of azo dyes (O'Neil, 2001) and gained importance in complexation (Genther et al., 2007). We purchased 1-amino-2-naphthalene sulfonic acid to use as a precursor for the syntheses of biologically active thiazine related heterocycles (Arshad et al., 2008a, b; Shafiq et al., 2008). The crystal structures of 5-aminonaphthalene-1-sulfonic acid (Genther et al., 2007; Smith et al., 2004) and 8-ammonionaphthalene-2-sulfonate monohydrate (Smith et al., 2009) have already been published, which are position isomers of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C4/C9/C10) and B (C5-C10) are, of course, planar. The dihedral angles between them are A/B = 1.94 (3)°. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (S1/O2/N1/C1/C2/H2N), which is oriented with respect to the other rings at dihedral angles of A/C = 0.74 (3) and B/C = 2.59 (3) °. So, the rings are almost coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to the use of amino naphthalene sulfonic acid derivatives as a intermediates for the syntheses of azo dyes, see: O'Neil (2001). For related structures, see: Arshad et al. (2008a,b); Genther et al. (2007); Shafiq et al. (2008); Smith et al. (2004, 2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was purchased from Sigma-Aldrich and recrystalized in methanol for X-ray analysis.

Refinement top

Atoms H1N, H2N and H3N (for NH3) are located in a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically with C-H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-Ammonionaphthalene-2-sulfonate top
Crystal data top
C10H9NO3SF(000) = 928
Mr = 223.24Dx = 1.582 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2779 reflections
a = 9.4337 (3) Åθ = 3.1–27.5°
b = 10.6359 (4) ŵ = 0.33 mm1
c = 18.6775 (6) ÅT = 296 K
V = 1874.02 (11) Å3Hexagonal, dark brown
Z = 80.29 × 0.21 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2326 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.911, Tmax = 0.943k = 148
10742 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.6846P]
where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C10H9NO3SV = 1874.02 (11) Å3
Mr = 223.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4337 (3) ŵ = 0.33 mm1
b = 10.6359 (4) ÅT = 296 K
c = 18.6775 (6) Å0.29 × 0.21 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1763 reflections with I > 2/s(I)
Tmin = 0.911, Tmax = 0.943Rint = 0.035
10742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2326 reflectionsΔρmin = 0.50 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48056 (5)0.72906 (4)1.02833 (2)0.02659 (15)
O10.62861 (15)0.69891 (13)1.04059 (8)0.0375 (4)
O20.38420 (16)0.65642 (14)1.07238 (7)0.0401 (4)
O30.45788 (15)0.86350 (13)1.03188 (7)0.0369 (3)
N10.25407 (18)0.53879 (16)0.96588 (9)0.0282 (3)
H1N0.270 (2)0.459 (2)0.9642 (10)0.034*
H2N0.273 (2)0.565 (2)1.0112 (12)0.034*
H3N0.166 (3)0.558 (2)0.9579 (11)0.034*
C10.34654 (18)0.60250 (16)0.91466 (9)0.0248 (4)
C20.44755 (18)0.68602 (17)0.93750 (9)0.0253 (4)
C30.5354 (2)0.7463 (2)0.88661 (11)0.0346 (4)
H30.60540.80170.90180.041*
C40.5178 (2)0.7236 (2)0.81550 (11)0.0373 (5)
H40.57560.76460.78260.045*
C50.3947 (2)0.6159 (2)0.71689 (11)0.0411 (5)
H50.44950.65900.68360.049*
C60.2971 (3)0.5317 (2)0.69409 (12)0.0455 (6)
H60.28520.51750.64530.055*
C70.2144 (3)0.4659 (2)0.74345 (12)0.0457 (5)
H70.14860.40740.72720.055*
C80.2287 (2)0.48638 (19)0.81515 (11)0.0373 (5)
H80.17270.44180.84730.045*
C90.32805 (19)0.57488 (17)0.84084 (10)0.0277 (4)
C100.4142 (2)0.63928 (18)0.79073 (10)0.0317 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (2)0.0233 (2)0.0278 (2)0.00027 (18)0.00188 (17)0.00027 (17)
O10.0327 (7)0.0331 (7)0.0467 (8)0.0037 (6)0.0106 (6)0.0016 (6)
O20.0467 (9)0.0439 (8)0.0297 (7)0.0125 (7)0.0029 (6)0.0025 (6)
O30.0451 (8)0.0254 (7)0.0402 (8)0.0056 (6)0.0033 (6)0.0043 (6)
N10.0271 (8)0.0231 (8)0.0343 (9)0.0033 (7)0.0033 (7)0.0014 (7)
C10.0224 (8)0.0216 (8)0.0303 (9)0.0027 (7)0.0034 (7)0.0015 (7)
C20.0252 (8)0.0231 (8)0.0277 (9)0.0012 (7)0.0008 (7)0.0000 (7)
C30.0301 (9)0.0379 (11)0.0357 (10)0.0108 (8)0.0024 (8)0.0019 (8)
C40.0364 (10)0.0415 (12)0.0339 (10)0.0053 (9)0.0087 (8)0.0057 (9)
C50.0490 (12)0.0454 (12)0.0290 (10)0.0119 (11)0.0036 (9)0.0006 (9)
C60.0558 (13)0.0454 (13)0.0353 (11)0.0151 (11)0.0103 (10)0.0111 (9)
C70.0502 (13)0.0377 (12)0.0493 (13)0.0010 (10)0.0143 (10)0.0119 (10)
C80.0360 (11)0.0323 (10)0.0435 (11)0.0026 (9)0.0048 (8)0.0044 (9)
C90.0259 (8)0.0244 (9)0.0328 (10)0.0051 (7)0.0016 (7)0.0023 (7)
C100.0322 (9)0.0323 (10)0.0305 (10)0.0055 (8)0.0005 (7)0.0004 (8)
Geometric parameters (Å, º) top
S1—O31.4473 (14)C4—C101.405 (3)
S1—O21.4491 (14)C4—H40.9300
S1—O11.4513 (14)C5—C61.353 (3)
S1—C21.7845 (18)C5—C101.413 (3)
N1—C11.461 (2)C5—H50.9300
N1—H1N0.86 (2)C6—C71.395 (3)
N1—H2N0.91 (2)C6—H60.9300
N1—H3N0.86 (2)C7—C81.363 (3)
C1—C21.371 (2)C7—H70.9300
C1—C91.420 (2)C8—C91.412 (3)
C2—C31.415 (3)C8—H80.9300
C3—C41.360 (3)C9—C101.416 (3)
C3—H30.9300
O3—S1—O2114.07 (9)C3—C4—C10121.32 (18)
O3—S1—O1110.69 (9)C3—C4—H4119.3
O2—S1—O1113.34 (9)C10—C4—H4119.3
O3—S1—C2105.74 (8)C6—C5—C10120.8 (2)
O2—S1—C2107.07 (8)C6—C5—H5119.6
O1—S1—C2105.15 (8)C10—C5—H5119.6
C1—N1—H1N109.3 (14)C5—C6—C7120.3 (2)
C1—N1—H2N110.2 (14)C5—C6—H6119.9
H1N—N1—H2N107.7 (19)C7—C6—H6119.9
C1—N1—H3N110.5 (14)C8—C7—C6120.9 (2)
H1N—N1—H3N113 (2)C8—C7—H7119.5
H2N—N1—H3N106.3 (19)C6—C7—H7119.5
C2—C1—C9121.43 (16)C7—C8—C9120.4 (2)
C2—C1—N1120.77 (16)C7—C8—H8119.8
C9—C1—N1117.79 (16)C9—C8—H8119.8
C1—C2—C3119.45 (17)C8—C9—C10118.59 (17)
C1—C2—S1125.70 (14)C8—C9—C1123.31 (18)
C3—C2—S1114.85 (14)C10—C9—C1118.10 (16)
C4—C3—C2120.28 (18)C4—C10—C5121.61 (19)
C4—C3—H3119.9C4—C10—C9119.36 (17)
C2—C3—H3119.9C5—C10—C9119.03 (19)
C9—C1—C2—C30.1 (3)C6—C7—C8—C90.0 (3)
N1—C1—C2—C3179.95 (17)C7—C8—C9—C101.4 (3)
C9—C1—C2—S1179.69 (14)C7—C8—C9—C1178.78 (19)
N1—C1—C2—S10.3 (3)C2—C1—C9—C8177.77 (18)
O3—S1—C2—C1120.22 (16)N1—C1—C9—C82.2 (3)
O2—S1—C2—C11.78 (19)C2—C1—C9—C102.0 (3)
O1—S1—C2—C1122.61 (16)N1—C1—C9—C10178.00 (16)
O3—S1—C2—C359.42 (16)C3—C4—C10—C5179.5 (2)
O2—S1—C2—C3178.58 (14)C3—C4—C10—C91.2 (3)
O1—S1—C2—C357.75 (16)C6—C5—C10—C4178.0 (2)
C1—C2—C3—C41.4 (3)C6—C5—C10—C91.2 (3)
S1—C2—C3—C4178.30 (17)C8—C9—C10—C4177.23 (18)
C2—C3—C4—C100.8 (3)C1—C9—C10—C42.6 (3)
C10—C5—C6—C70.3 (3)C8—C9—C10—C52.0 (3)
C5—C6—C7—C80.9 (3)C1—C9—C10—C5178.18 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)1.94 (2)2.762 (2)160.4 (18)
N1—H2N···O20.91 (2)1.83 (2)2.651 (2)149.0 (19)
N1—H3N···O3ii0.87 (3)2.14 (3)2.982 (2)162 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H9NO3S
Mr223.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.4337 (3), 10.6359 (4), 18.6775 (6)
V3)1874.02 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.29 × 0.21 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.911, 0.943
No. of measured, independent and
observed [I > 2/s(I)] reflections
10742, 2326, 1763
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.03
No. of reflections2326
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)1.94 (2)2.762 (2)160.4 (18)
N1—H2N···O20.91 (2)1.83 (2)2.651 (2)149.0 (19)
N1—H3N···O3ii0.87 (3)2.14 (3)2.982 (2)162 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z+2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008a). Acta Cryst. E64, m994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGenther, D. J., Squattrito, P. J., Kirschbaum, K., Yearley, E. J. & Pinkerton, A. A. (2007). Acta Cryst. C63, m604–m609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 410. Whitehouse Station, New Jersey: Merck & Co.  Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Young, D. J. (2009). Acta Cryst. E65, o2110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2004). Acta Cryst. E60, o2014–o2016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds