metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quininium tetra­chloridozinc(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 20 August 2009; accepted 2 September 2009; online 5 September 2009)

The asymmetric unit of the title compound {systematic name: 2-[hydr­oxy(6-meth­oxy­quinolin-1-ium-4-yl)meth­yl]-8-vinyl­quinuclidin-1-ium tetra­chlorido­zinc(II)}, (C20H26N2O2)[ZnCl4], consists of a double proton­ated quininium cation and a tetra­chloridozinc(II) anion. The ZnII ion is in a slightly distorted tetra­hedral coordination environment. The crystal structure is stabilized by inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds.

Related literature

For ferroelectric behavior, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008b[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008b). Dalton Trans. pp. 3946-3948.]). For non-linear optical second harmonic generation, see: Qu et al. (2003b[Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003b). Inorg. Chem. 42, 7710-7712.]). For transition-metal complexes of quinine, see: Fu et al. (2008a[Fu, D.-W., Ye, H.-Y., Ye, Q., Pan, K.-J. & Xiong, R.-G. (2008a). Dalton Trans. pp. 874-877.]); Qu et al. (2003a[Qu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003a). Organometallics, 22, 2814-2816.]); Zhao et al. (2003[Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166-4168.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H26N2O2)[ZnCl4]

  • Mr = 533.60

  • Orthorhombic, P 21 21 21

  • a = 9.518 (2) Å

  • b = 15.680 (5) Å

  • c = 15.846 (5) Å

  • V = 2364.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.660, Tmax = 0.695

  • 21856 measured reflections

  • 4631 independent reflections

  • 4325 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.09

  • 4631 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2005 Friedel pairs

  • Flack parameter: 0.007 (11)

Table 1
Selected bond lengths (Å)

Cl1—Zn1 2.3097 (10)
Cl2—Zn1 2.3271 (10)
Cl3—Zn1 2.2701 (11)
Cl4—Zn1 2.2285 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 1.01 2.17 3.167 (3) 169
N2—H2A⋯Cl2i 0.86 2.39 3.157 (3) 148
O2—H2B⋯Cl2 1.06 (4) 2.19 (4) 3.245 (3) 170 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The existence of a chiral centre in an organic ligand is very important for the construction of noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties, such as ferroelectricity (Fu et al., 2007, 2008b) and nonlinear optical second harmonic generation (Qu et al., 2003b). Quinine has a chiral centre, which has shown tremendous scope in the synthesis of transition-metal complexes (Fu et al., 2008a; Qu et al., 2003a; Zhao et al., 2003). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a double protonated quininium cation and a tetrachloridozinc anion (Fig. 1). The ZnII ion is in a slightly distorted tetrahedral coordination environment (Table 1). Intermolecular N—H···Cl and O—H···Cl hydrogen bonds lead to a one-dimensional chain along the a axis (Table 2 and Fig. 2).

Related literature top

For ferroelectric behavior, see: Fu et al. (2007, 2008b). For non-linear optical second harmonic generation, see: Qu et al. (2003b). For transition-metal complexes of quinine, see: Fu et al. (2008a); Qu et al. (2003a); Zhao et al. (2003).

Experimental top

A mixture of quinine (0.324 g, 1 mmol), ZnCl2(0.136 g, 1 mmol) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 353 K (0.5 h), forming a clear solution. The reaction mixture was cooled slowly to room temperature and crystals of the title compound were formed after 5 d.

Refinement top

All H atoms were placed in calculated positions, except H1, H2B, H14A and H14B, and refined using a riding model, with C—H = 0.93–0.98 Å and N—H = 0.86 Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C, N). H1, H2B, H14A and H14B were located in difference Fourier maps. The coordinates of H1 atom were fixed and the Uiso(H1) parameter was refined. H2B atom was refined isotropically. H14A and H14B atoms were fixed with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids were drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
2-[hydroxy(6-methoxyquinolin-1-ium-4-yl)methyl]-8-vinylquinuclidin-1-ium tetrachloridozinc(II) top
Crystal data top
(C20H26N2O2)[ZnCl4]F(000) = 1096
Mr = 533.60Dx = 1.499 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4325 reflections
a = 9.518 (2) Åθ = 2.6–26.0°
b = 15.680 (5) ŵ = 1.51 mm1
c = 15.846 (5) ÅT = 293 K
V = 2364.8 (12) Å3Block, colorless
Z = 40.30 × 0.28 × 0.26 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
4631 independent reflections
Radiation source: fine-focus sealed tube4325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.660, Tmax = 0.695l = 1919
21856 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0454P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4631 reflectionsΔρmax = 0.83 e Å3
267 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 2005 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (11)
Crystal data top
(C20H26N2O2)[ZnCl4]V = 2364.8 (12) Å3
Mr = 533.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.518 (2) ŵ = 1.51 mm1
b = 15.680 (5) ÅT = 293 K
c = 15.846 (5) Å0.30 × 0.28 × 0.26 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
4631 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4325 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.695Rint = 0.038
21856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.83 e Å3
S = 1.09Δρmin = 0.39 e Å3
4631 reflectionsAbsolute structure: Flack (1983), 2005 Friedel pairs
267 parametersAbsolute structure parameter: 0.007 (11)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0187 (4)0.4580 (3)0.6721 (3)0.0622 (11)
H1A0.09260.47330.71040.093*
H1B0.03140.50830.65530.093*
H1C0.04480.41920.69940.093*
C20.0120 (3)0.3916 (2)0.5375 (2)0.0439 (8)
C30.0535 (4)0.3493 (3)0.4687 (3)0.0565 (10)
H3A0.15100.34530.46720.068*
C40.1544 (3)0.4008 (2)0.53945 (19)0.0379 (7)
H4A0.19640.43030.58370.045*
C50.0225 (4)0.3151 (3)0.4059 (3)0.0546 (10)
H5A0.02190.28840.36070.065*
C60.1695 (4)0.3200 (2)0.4091 (2)0.0439 (8)
C70.2396 (3)0.3655 (2)0.47377 (19)0.0360 (7)
C80.3871 (5)0.2812 (2)0.3483 (2)0.0522 (9)
H8A0.43580.25140.30690.063*
C90.4602 (4)0.3271 (2)0.4088 (2)0.0473 (8)
H9A0.55790.32900.40740.057*
C100.3868 (4)0.37042 (19)0.47189 (19)0.0370 (7)
C110.4690 (3)0.4239 (2)0.5343 (2)0.0359 (7)
H11A0.42660.41810.59030.043*
C120.4575 (3)0.51712 (19)0.50559 (19)0.0335 (6)
H12A0.35770.52820.49500.040*
C130.5370 (4)0.5386 (2)0.4226 (2)0.0450 (8)
H13A0.58770.48870.40300.054*
H13B0.47030.55500.37920.054*
C140.5133 (5)0.8073 (3)0.3607 (3)0.0702 (12)
H14A0.60900.83650.38350.084*
H14B0.47200.83250.31760.084*
C150.4802 (5)0.7337 (2)0.3974 (2)0.0543 (9)
H15A0.40020.70550.37850.065*
C160.5622 (4)0.6934 (2)0.4666 (2)0.0459 (8)
H16A0.63240.73450.48620.055*
C170.4685 (4)0.6691 (2)0.5419 (2)0.0466 (8)
H17A0.48230.70960.58740.056*
H17B0.37050.67110.52510.056*
C180.6398 (3)0.6114 (2)0.4387 (2)0.0463 (8)
H18A0.69290.62310.38690.056*
C190.7406 (4)0.5846 (3)0.5081 (3)0.0600 (10)
H19A0.81570.62620.51310.072*
H19B0.78200.52980.49440.072*
C200.6600 (4)0.5785 (2)0.5913 (2)0.0526 (9)
H20A0.68380.52580.62010.063*
H20B0.68490.62590.62770.063*
N10.5046 (3)0.58063 (17)0.57192 (16)0.0402 (6)
H10.45920.56540.62780.054 (11)*
N20.2491 (4)0.27970 (18)0.34941 (18)0.0525 (8)
H2A0.20640.25180.31040.063*
O10.0779 (2)0.41778 (18)0.59904 (17)0.0549 (6)
O20.6096 (2)0.39639 (15)0.53783 (16)0.0474 (5)
H2B0.623 (4)0.386 (2)0.604 (2)0.050 (10)*
Cl10.32557 (9)0.53094 (5)0.73304 (5)0.0476 (2)
Cl20.62582 (8)0.38284 (6)0.74196 (5)0.0480 (2)
Cl30.27211 (10)0.29305 (6)0.72517 (6)0.0567 (2)
Cl40.38062 (10)0.39886 (6)0.92702 (5)0.0538 (2)
Zn10.39476 (4)0.40056 (2)0.78665 (2)0.04004 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.075 (3)0.074 (3)0.0023 (19)0.0023 (18)0.016 (2)
C20.0350 (17)0.0454 (19)0.0514 (19)0.0047 (14)0.0067 (14)0.0100 (17)
C30.038 (2)0.060 (2)0.071 (3)0.0166 (16)0.0170 (19)0.013 (2)
C40.0322 (16)0.0390 (16)0.0424 (16)0.0033 (13)0.0059 (12)0.0030 (15)
C50.057 (2)0.058 (2)0.049 (2)0.0198 (19)0.0221 (18)0.0062 (19)
C60.056 (2)0.0389 (17)0.0373 (17)0.0115 (15)0.0109 (15)0.0048 (14)
C70.0404 (18)0.0328 (15)0.0349 (16)0.0069 (13)0.0076 (13)0.0028 (13)
C80.070 (3)0.0444 (19)0.0419 (19)0.0024 (18)0.0033 (19)0.0030 (15)
C90.050 (2)0.0464 (19)0.0458 (19)0.0008 (15)0.0029 (16)0.0048 (16)
C100.0435 (18)0.0342 (15)0.0332 (15)0.0023 (14)0.0046 (14)0.0049 (12)
C110.0299 (15)0.0419 (17)0.0361 (16)0.0032 (12)0.0003 (13)0.0015 (13)
C120.0322 (15)0.0377 (16)0.0305 (15)0.0063 (12)0.0002 (12)0.0013 (13)
C130.057 (2)0.0420 (18)0.0358 (18)0.0028 (15)0.0082 (15)0.0010 (15)
C140.101 (3)0.057 (2)0.052 (2)0.012 (2)0.008 (2)0.002 (2)
C150.063 (2)0.050 (2)0.050 (2)0.0002 (18)0.0042 (18)0.0006 (18)
C160.051 (2)0.0398 (18)0.0471 (19)0.0092 (15)0.0009 (15)0.0010 (15)
C170.053 (2)0.0382 (18)0.048 (2)0.0040 (15)0.0082 (16)0.0041 (16)
C180.0415 (19)0.0481 (19)0.0493 (19)0.0061 (14)0.0130 (14)0.0055 (16)
C190.036 (2)0.062 (3)0.082 (3)0.0065 (16)0.0003 (18)0.008 (2)
C200.050 (2)0.052 (2)0.056 (2)0.0138 (16)0.0220 (17)0.0008 (17)
N10.0450 (15)0.0444 (16)0.0311 (14)0.0081 (12)0.0002 (11)0.0049 (12)
N20.078 (2)0.0424 (17)0.0375 (15)0.0137 (15)0.0152 (15)0.0065 (13)
O10.0331 (13)0.0688 (17)0.0628 (16)0.0017 (11)0.0025 (11)0.0023 (13)
O20.0338 (12)0.0493 (13)0.0592 (15)0.0056 (11)0.0064 (10)0.0012 (12)
Cl10.0530 (5)0.0456 (4)0.0441 (5)0.0086 (4)0.0062 (4)0.0019 (4)
Cl20.0369 (4)0.0630 (5)0.0440 (4)0.0088 (4)0.0028 (3)0.0093 (4)
Cl30.0517 (5)0.0551 (5)0.0632 (6)0.0041 (4)0.0097 (4)0.0149 (5)
Cl40.0589 (5)0.0679 (5)0.0345 (4)0.0052 (5)0.0070 (4)0.0025 (4)
Zn10.0409 (2)0.0449 (2)0.03432 (18)0.00593 (17)0.00545 (15)0.00051 (16)
Geometric parameters (Å, º) top
C1—O11.433 (5)C13—H13A0.9700
C1—H1A0.9600C13—H13B0.9700
C1—H1B0.9600C14—C151.330 (6)
C1—H1C0.9600C14—H14A1.08
C2—O11.361 (4)C14—H14B0.88
C2—C41.364 (4)C15—C161.486 (5)
C2—C31.419 (5)C15—H15A0.9300
C3—C51.343 (6)C16—C171.537 (5)
C3—H3A0.9300C16—C181.546 (5)
C4—C71.431 (5)C16—H16A0.9800
C4—H4A0.9300C17—N11.506 (5)
C5—C61.402 (5)C17—H17A0.9700
C5—H5A0.9300C17—H17B0.9700
C6—N21.367 (5)C18—C191.519 (5)
C6—C71.416 (4)C18—H18A0.9800
C7—C101.404 (5)C19—C201.529 (5)
C8—N21.314 (5)C19—H19A0.9700
C8—C91.386 (5)C19—H19B0.9700
C8—H8A0.9300C20—N11.511 (5)
C9—C101.396 (5)C20—H20A0.9700
C9—H9A0.9300C20—H20B0.9700
C10—C111.514 (4)N1—H11.01
C11—O21.407 (4)N2—H2A0.86
C11—C121.534 (4)O2—H2B1.06 (4)
C11—H11A0.9800Cl1—Zn12.3097 (10)
C12—N11.516 (4)Cl2—Zn12.3271 (10)
C12—C131.554 (4)Cl3—Zn12.2701 (11)
C12—H12A0.9800Cl4—Zn12.2285 (11)
C13—C181.525 (5)
O1—C1—H1A109.5C15—C14—H14B128.6
O1—C1—H1B109.5H14A—C14—H14B116.4
H1A—C1—H1B109.5C14—C15—C16124.6 (4)
O1—C1—H1C109.5C14—C15—H15A117.7
H1A—C1—H1C109.5C16—C15—H15A117.7
H1B—C1—H1C109.5C15—C16—C17111.9 (3)
O1—C2—C4125.2 (3)C15—C16—C18113.1 (3)
O1—C2—C3114.5 (3)C17—C16—C18107.1 (3)
C4—C2—C3120.2 (4)C15—C16—H16A108.2
C5—C3—C2121.3 (4)C17—C16—H16A108.2
C5—C3—H3A119.3C18—C16—H16A108.2
C2—C3—H3A119.3N1—C17—C16109.9 (3)
C2—C4—C7120.3 (3)N1—C17—H17A109.7
C2—C4—H4A119.8C16—C17—H17A109.7
C7—C4—H4A119.8N1—C17—H17B109.7
C3—C5—C6119.2 (4)C16—C17—H17B109.7
C3—C5—H5A120.4H17A—C17—H17B108.2
C6—C5—H5A120.4C19—C18—C13108.6 (3)
N2—C6—C5120.2 (3)C19—C18—C16108.9 (3)
N2—C6—C7118.2 (3)C13—C18—C16111.3 (3)
C5—C6—C7121.6 (4)C19—C18—H18A109.3
C10—C7—C6118.9 (3)C13—C18—H18A109.3
C10—C7—C4124.0 (3)C16—C18—H18A109.3
C6—C7—C4117.1 (3)C18—C19—C20109.0 (3)
N2—C8—C9120.2 (4)C18—C19—H19A109.9
N2—C8—H8A119.9C20—C19—H19A109.9
C9—C8—H8A119.9C18—C19—H19B109.9
C8—C9—C10119.8 (4)C20—C19—H19B109.9
C8—C9—H9A120.1H19A—C19—H19B108.3
C10—C9—H9A120.1N1—C20—C19108.3 (3)
C9—C10—C7119.2 (3)N1—C20—H20A110.0
C9—C10—C11118.6 (3)C19—C20—H20A110.0
C7—C10—C11122.2 (3)N1—C20—H20B110.0
O2—C11—C10110.3 (3)C19—C20—H20B110.0
O2—C11—C12111.8 (2)H20A—C20—H20B108.4
C10—C11—C12107.3 (2)C17—N1—C20107.9 (3)
O2—C11—H11A109.1C17—N1—C12108.6 (2)
C10—C11—H11A109.1C20—N1—C12114.5 (3)
C12—C11—H11A109.1C17—N1—H1113.3
N1—C12—C11113.5 (2)C20—N1—H1103.6
N1—C12—C13107.5 (2)C12—N1—H1108.9
C11—C12—C13115.0 (3)C8—N2—C6123.7 (3)
N1—C12—H12A106.8C8—N2—H2A118.1
C11—C12—H12A106.8C6—N2—H2A118.1
C13—C12—H12A106.8C2—O1—C1117.7 (3)
C18—C13—C12109.4 (3)C11—O2—H2B101 (2)
C18—C13—H13A109.8Cl4—Zn1—Cl3112.85 (4)
C12—C13—H13A109.8Cl4—Zn1—Cl1111.13 (4)
C18—C13—H13B109.8Cl3—Zn1—Cl1110.66 (4)
C12—C13—H13B109.8Cl4—Zn1—Cl2111.06 (4)
H13A—C13—H13B108.2Cl3—Zn1—Cl2105.47 (4)
C15—C14—H14A114.8Cl1—Zn1—Cl2105.26 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl11.012.173.167 (3)169
N2—H2A···Cl2i0.862.393.157 (3)148
O2—H2B···Cl21.06 (4)2.19 (4)3.245 (3)170 (3)
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C20H26N2O2)[ZnCl4]
Mr533.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.518 (2), 15.680 (5), 15.846 (5)
V3)2364.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.660, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
21856, 4631, 4325
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.09
No. of reflections4631
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.39
Absolute structureFlack (1983), 2005 Friedel pairs
Absolute structure parameter0.007 (11)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cl1—Zn12.3097 (10)Cl3—Zn12.2701 (11)
Cl2—Zn12.3271 (10)Cl4—Zn12.2285 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl11.012.173.167 (3)169
N2—H2A···Cl2i0.862.393.157 (3)148
O2—H2B···Cl21.06 (4)2.19 (4)3.245 (3)170 (3)
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W., Ye, H.-Y., Ye, Q., Pan, K.-J. & Xiong, R.-G. (2008a). Dalton Trans. pp. 874–877.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008b). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationQu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003a). Organometallics, 22, 2814–2816.  Web of Science CSD CrossRef CAS Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003b). Inorg. Chem. 42, 7710–7712.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166–4168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds