metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1217-m1218

Poly[[aqua­(μ2-oxalato)(μ2-2-oxido­pyridinium-3-carboxylato)holmium(III)] monohydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 25 August 2009; accepted 8 September 2009; online 16 September 2009)

In the title complex, {[Ho(C2O4)(C6H4NO3)(H2O)]·(H2O)}n, the HoIII ion is coordinated by three O atoms from two 2-oxidopyridinium-3-carboxylate ligands, four O atoms from two oxalate ligands and one water mol­ecule in a distorted bicapped trigonal-prismatic geometry. The 2-oxidopyridin­ium-3-carboxylate and oxalate ligands link the HoIII ions into a layer in (100). These layers are further connected by inter­molecular O—H⋯O hydrogen bonds involving the coordinated water mol­ecules to assemble a three-dimensional supra­molecular network. The uncoordin­ated water mol­ecule is involved in N—H⋯O and O—H⋯O hydrogen bonds within the layer.

Related literature

For general background to mol­ecular self-assembly of supra­molecular architectures, see: Deng et al. (2008[Deng, H., Qiu, Y.-C., Li, Y.-H., Liu, Z.-H., Zeng, R.-H., Zeller, M. & Batten, S. R. (2008). Chem. Commun. pp. 2239-2241.]); Zeng et al. (2007[Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.]). For 2-oxidopyridinium-3-carboxylic acid and oxalic acid as building blocks, see: Huang et al. (2009[Huang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177-m178.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho(C2O4)(C6H4NO3)(H2O)]·H2O

  • Mr = 427.08

  • Triclinic, [P \overline 1]

  • a = 6.5391 (11) Å

  • b = 9.5305 (16) Å

  • c = 9.7391 (16) Å

  • α = 71.810 (2)°

  • β = 78.862 (2)°

  • γ = 80.359 (2)°

  • V = 562.01 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.09 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.332, Tmax = 0.379

  • 2884 measured reflections

  • 1983 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.06

  • 1983 reflections

  • 184 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.75 e Å−3

  • Δρmin = −2.19 e Å−3

Table 1
Selected bond lengths (Å)

Ho1—O1 2.354 (5)
Ho1—O2i 2.348 (5)
Ho1—O3 2.279 (5)
Ho1—O4 2.406 (4)
Ho1—O5ii 2.364 (5)
Ho1—O6 2.394 (5)
Ho1—O7iii 2.392 (5)
Ho1—O1W 2.348 (5)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2iv 0.84 (6) 2.02 (6) 2.737 (7) 142 (8)
O1W—H2W⋯O4v 0.85 (7) 1.96 (4) 2.749 (7) 154 (8)
O2W—H3W⋯O6 0.84 (7) 2.36 (11) 2.882 (10) 121 (8)
O2W—H4W⋯O1 0.86 (7) 2.27 (3) 3.082 (8) 157 (9)
N1—H1⋯O2Wvi 0.86 1.99 2.781 (10) 154
Symmetry codes: (iv) -x+1, -y, -z+1; (v) x+1, y, z; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Deng et al., 2008; Zeng et al., 2007). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and ππ stacking interactions. As a building block, 2-oxynicotinic acid and oxalic acid are good ligands with multifunctional coordination sites providing a high likelihood for the generation of structures with high dimensions (Huang et al., 2009). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the title compound (Fig. 1), the HoIII centre is eight-coordinated by seven O atoms from two 2-oxynicotinate ligands and two oxalate ligands, and by one water molecule in a distorted bicapped trigonal prismatic geometry, with Ho—O distances and O—Ho—O angles ranging from 2.279 (5) to 2.406 (4) Å and 67.30 (17) to 148.26 (17)°, respectively (Table 1). The carboxylate groups of the 2-oxynicotinates and oxalates act as bridging ligands, linking the Ho centres into a layer parallel to the (100) plane (Fig. 2). The layers are further connected by intermolecular O—H···O hydrogen bonds involving the coordinated water molecules into a three-dimensional supramolecular network (Table 2). The uncoordinated water molecule is involved in N—H···O and O—H···O hydrogen bonds within the layer (Table 2).

Related literature top

For general background to molecular self-assembly of supramolecular architectures, see: Deng et al. (2008); Zeng et al. (2007). For 2-oxidopyridinium-3-carboxylic acid and oxalic acid as building blocks, see: Huang et al. (2009);

Experimental top

A mixture of Ho2O3 (0.375 g, 1 mmol), 2-oxynicotinic acid (0.127 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 446 K for 2 d, and then cooled to room temperature at 5 K h-1, giving colourless block crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.84 (1) and H···H = 1.35 (1) Å, and with a fixed Uiso(H) = 0.064 Å2. H atoms attached to C and N atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 and N—H= 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). The highest residual electron density was found 0.94 Å from Ho1 and the deepest hole 0.91 Å from Ho1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, -z; (iii) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. View of a layered network of the title compound.
Poly[[aqua(µ2-oxalato)(µ2-2-oxidopyridinium-3-carboxylato)holmium(III)] monohydrate] top
Crystal data top
[Ho(C2O4)(C6H4NO3)(H2O)]·H2OZ = 2
Mr = 427.08F(000) = 404
Triclinic, P1Dx = 2.524 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5391 (11) ÅCell parameters from 2285 reflections
b = 9.5305 (16) Åθ = 2.2–28.1°
c = 9.7391 (16) ŵ = 7.09 mm1
α = 71.810 (2)°T = 296 K
β = 78.862 (2)°Block, colourless
γ = 80.359 (2)°0.20 × 0.18 × 0.17 mm
V = 562.01 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1983 independent reflections
Radiation source: fine-focus sealed tube1862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.332, Tmax = 0.379k = 1111
2884 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 2.75 e Å3
6 restraintsΔρmin = 2.19 e Å3
Crystal data top
[Ho(C2O4)(C6H4NO3)(H2O)]·H2Oγ = 80.359 (2)°
Mr = 427.08V = 562.01 (16) Å3
Triclinic, P1Z = 2
a = 6.5391 (11) ÅMo Kα radiation
b = 9.5305 (16) ŵ = 7.09 mm1
c = 9.7391 (16) ÅT = 296 K
α = 71.810 (2)°0.20 × 0.18 × 0.17 mm
β = 78.862 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1862 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.379Rint = 0.018
2884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 2.75 e Å3
1983 reflectionsΔρmin = 2.19 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.09083 (4)0.29059 (3)0.30045 (3)0.01784 (15)
O40.1655 (7)0.3863 (5)0.1370 (5)0.0219 (10)
O30.1549 (8)0.1295 (6)0.1626 (5)0.0311 (11)
O60.1351 (9)0.3228 (5)0.5267 (6)0.0338 (12)
O10.2127 (8)0.0581 (5)0.4520 (5)0.0251 (10)
O50.2292 (7)0.5458 (5)0.0767 (5)0.0258 (10)
N10.2729 (11)0.0557 (8)0.0581 (7)0.0366 (15)
H10.24070.00540.02270.044*
C60.2307 (12)0.0067 (8)0.1802 (8)0.0266 (15)
C80.0606 (11)0.4422 (8)0.5578 (8)0.0261 (15)
C50.3624 (14)0.1948 (10)0.0574 (10)0.044 (2)
H50.38620.22130.02900.052*
C40.4170 (14)0.2947 (9)0.1807 (10)0.048 (3)
H40.48510.38820.17950.057*
C30.3695 (13)0.2550 (9)0.3094 (10)0.0396 (19)
H30.39990.32500.39600.048*
C20.2776 (10)0.1133 (7)0.3126 (7)0.0251 (15)
C10.2306 (10)0.0747 (7)0.4529 (7)0.0236 (14)
C70.1147 (10)0.4807 (7)0.0161 (7)0.0190 (13)
O2W0.2278 (13)0.0635 (9)0.7646 (8)0.0621 (19)
O20.2125 (7)0.1813 (5)0.5703 (5)0.0262 (10)
O70.0730 (9)0.4748 (6)0.6691 (5)0.0358 (13)
O1W0.4526 (8)0.2970 (7)0.2822 (6)0.0427 (15)
H3W0.164 (16)0.149 (7)0.758 (10)0.064*
H4W0.203 (16)0.041 (10)0.691 (6)0.064*
H1W0.508 (12)0.263 (11)0.359 (5)0.064*
H2W0.549 (10)0.332 (11)0.215 (6)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.0166 (2)0.0197 (2)0.0158 (2)0.00221 (12)0.00168 (12)0.00363 (13)
O40.018 (2)0.027 (2)0.017 (2)0.0088 (18)0.0019 (18)0.0028 (19)
O30.039 (3)0.031 (3)0.020 (2)0.002 (2)0.005 (2)0.007 (2)
O60.046 (3)0.023 (3)0.034 (3)0.010 (2)0.013 (2)0.013 (2)
O10.027 (3)0.024 (2)0.022 (2)0.0029 (19)0.0024 (19)0.0050 (19)
O50.016 (2)0.035 (3)0.023 (2)0.0035 (19)0.0071 (19)0.001 (2)
N10.040 (4)0.043 (4)0.028 (3)0.009 (3)0.003 (3)0.016 (3)
C60.025 (4)0.027 (4)0.029 (4)0.007 (3)0.001 (3)0.010 (3)
C80.024 (4)0.026 (4)0.028 (4)0.005 (3)0.003 (3)0.007 (3)
C50.048 (5)0.046 (5)0.042 (5)0.011 (4)0.014 (4)0.028 (4)
C40.055 (6)0.036 (5)0.050 (6)0.008 (4)0.013 (5)0.021 (5)
C30.038 (5)0.032 (4)0.047 (5)0.000 (3)0.001 (4)0.015 (4)
C20.018 (3)0.025 (3)0.029 (4)0.008 (3)0.007 (3)0.006 (3)
C10.012 (3)0.026 (3)0.028 (4)0.000 (3)0.003 (3)0.003 (3)
C70.018 (3)0.020 (3)0.020 (3)0.006 (2)0.001 (3)0.007 (3)
O2W0.069 (5)0.078 (5)0.041 (4)0.022 (4)0.020 (4)0.005 (4)
O20.019 (2)0.027 (3)0.027 (3)0.0043 (19)0.0037 (19)0.002 (2)
O70.056 (4)0.031 (3)0.024 (3)0.008 (2)0.018 (2)0.013 (2)
O1W0.021 (3)0.062 (4)0.029 (3)0.012 (3)0.008 (2)0.015 (3)
Geometric parameters (Å, º) top
Ho1—O12.354 (5)C6—C21.421 (10)
Ho1—O2i2.348 (5)C8—O71.237 (9)
Ho1—O32.279 (5)C8—C8iii1.546 (15)
Ho1—O42.406 (4)C5—C41.347 (13)
Ho1—O5ii2.364 (5)C5—H50.9300
Ho1—O62.394 (5)C4—C31.384 (11)
Ho1—O7iii2.392 (5)C4—H40.9300
Ho1—O1W2.348 (5)C3—C21.390 (10)
O4—C71.262 (8)C3—H30.9300
O3—C61.279 (9)C2—C11.487 (10)
O6—C81.263 (9)C1—O21.271 (8)
O1—C11.249 (8)C7—C7ii1.554 (12)
O5—C71.232 (8)O2W—H3W0.84 (7)
O5—Ho1ii2.364 (4)O2W—H4W0.86 (7)
N1—C51.358 (11)O1W—H1W0.84 (6)
N1—C61.373 (10)O1W—H2W0.85 (7)
N1—H10.8600
O3—Ho1—O1W90.4 (2)C5—N1—C6123.9 (7)
O3—Ho1—O2i90.37 (18)C5—N1—H1118.0
O1W—Ho1—O2i148.26 (17)C6—N1—H1118.0
O3—Ho1—O173.45 (17)O3—C6—N1116.8 (7)
O1W—Ho1—O175.15 (18)O3—C6—C2127.2 (7)
O2i—Ho1—O174.69 (16)N1—C6—C2116.1 (7)
O3—Ho1—O5ii81.80 (17)O7—C8—O6127.4 (7)
O1W—Ho1—O5ii67.83 (16)O7—C8—C8iii117.7 (8)
O2i—Ho1—O5ii143.49 (16)O6—C8—C8iii114.9 (8)
O1—Ho1—O5ii134.91 (16)C4—C5—N1120.6 (8)
O3—Ho1—O7iii148.06 (18)C4—C5—H5119.7
O1W—Ho1—O7iii105.7 (2)N1—C5—H5119.7
O2i—Ho1—O7iii89.77 (18)C5—C4—C3118.5 (8)
O1—Ho1—O7iii136.83 (16)C5—C4—H4120.7
O5ii—Ho1—O7iii79.25 (18)C3—C4—H4120.7
O3—Ho1—O6144.55 (17)C4—C3—C2121.7 (8)
O1W—Ho1—O675.0 (2)C4—C3—H3119.1
O2i—Ho1—O686.35 (18)C2—C3—H3119.1
O1—Ho1—O671.64 (16)C3—C2—C6119.1 (7)
O5ii—Ho1—O6119.81 (18)C3—C2—C1120.1 (7)
O7iii—Ho1—O667.30 (17)C6—C2—C1120.8 (6)
O3—Ho1—O477.17 (17)O1—C1—O2122.8 (6)
O1W—Ho1—O4135.57 (16)O1—C1—C2119.9 (6)
O2i—Ho1—O475.25 (15)O2—C1—C2117.3 (6)
O1—Ho1—O4137.32 (16)O5—C7—O4126.5 (6)
O5ii—Ho1—O468.24 (14)O5—C7—C7ii117.4 (7)
O7iii—Ho1—O472.00 (17)O4—C7—C7ii116.0 (7)
O6—Ho1—O4135.14 (16)H3W—O2W—H4W105 (9)
C7—O4—Ho1118.2 (4)C1—O2—Ho1i128.4 (4)
C6—O3—Ho1136.0 (5)C8—O7—Ho1iii119.8 (5)
C8—O6—Ho1120.3 (5)Ho1—O1W—H1W119 (6)
C1—O1—Ho1136.8 (4)Ho1—O1W—H2W136 (6)
C7—O5—Ho1ii119.9 (4)H1W—O1W—H2W106 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.84 (6)2.02 (6)2.737 (7)142 (8)
O1W—H2W···O4v0.85 (7)1.96 (4)2.749 (7)154 (8)
O2W—H3W···O60.84 (7)2.36 (11)2.882 (10)121 (8)
O2W—H4W···O10.86 (7)2.27 (3)3.082 (8)157 (9)
N1—H1···O2Wvi0.861.992.781 (10)154
Symmetry codes: (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ho(C2O4)(C6H4NO3)(H2O)]·H2O
Mr427.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5391 (11), 9.5305 (16), 9.7391 (16)
α, β, γ (°)71.810 (2), 78.862 (2), 80.359 (2)
V3)562.01 (16)
Z2
Radiation typeMo Kα
µ (mm1)7.09
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.332, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
2884, 1983, 1862
Rint0.018
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.06
No. of reflections1983
No. of parameters184
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.75, 2.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Ho1—O12.354 (5)Ho1—O5ii2.364 (5)
Ho1—O2i2.348 (5)Ho1—O62.394 (5)
Ho1—O32.279 (5)Ho1—O7iii2.392 (5)
Ho1—O42.406 (4)Ho1—O1W2.348 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.84 (6)2.02 (6)2.737 (7)142 (8)
O1W—H2W···O4v0.85 (7)1.96 (4)2.749 (7)154 (8)
O2W—H3W···O60.84 (7)2.36 (11)2.882 (10)121 (8)
O2W—H4W···O10.86 (7)2.27 (3)3.082 (8)157 (9)
N1—H1···O2Wvi0.861.992.781 (10)153.5
Symmetry codes: (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z1.
 

Acknowledgements

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of China (project No. 2007A090302046), the Project of Science and Technology of Guangdong Province (project No. 2007A020200002-4) and the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, H., Qiu, Y.-C., Li, Y.-H., Liu, Z.-H., Zeng, R.-H., Zeller, M. & Batten, S. R. (2008). Chem. Commun. pp. 2239–2241.  Web of Science CSD CrossRef Google Scholar
First citationHuang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177–m178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1217-m1218
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds