metal-organic compounds
Poly[diaqua(μ2-5-carboxypyridine-3-carboxylato-κ2N:O3)hemi(μ2-oxalato-κ4O1,O2:O1′,O2′)(μ4-pyridine-3,5-dicarboxylato-κ4N:O3:O3′:O5)silver(I)terbium(III)]
aSchool of Chemistry and Chemical Engineering, Zhao Qing University, Zhao Qing 526061, People's Republic of China
*Correspondence e-mail: guohf60@yahoo.cn
In the title coordination polymer, [AgTb(C7H3NO4)(C7H4NO4)(C2O4)0.5(H2O)2]n, the TbIII ion is eight-coordinated by three O atoms from three different pydc (H2pydc = pyridine-3,5-dicarboxylic acid) ligands, one O atom from one Hpydc ligand, two O atoms from one oxalate ligand and two water molecules in a distorted square-antiprismatic geometry. The AgI ion is coordinated in an almost linear fashion by two pyridyl N atoms from one pydc and one Hpydc ligand and has weak interactions with two carboxylate O atoms. The carboxylate groups of pydc and Hpydc ligands link Tb centers, forming a one-dimensional chain. The oxalate adopts a tetradentate bis-chelating coordination mode, connecting the chains into a two-dimensional layer. These layers are further assembled via [Ag(pydc)(Hpydc)] pillars and O—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional coordination framework.
Related literature
For general background to transition metal–lanthanide complexes, see: Barbour (2006); Kepert (2006); Kong et al. (2008); Rao et al. (2004); Wu et al. (2008); Zhang et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809036393/hy2227sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809036393/hy2227Isup2.hkl
A mixture of Tb2O3 (0.183 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), H2pydc (0.167 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), HNO3 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The colorless block crystals obtained were washed with water and dried in air (yield 46% based on Tb).
C-bound H atoms were placed at calculated positions and treated as riding on the parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O–H = 0.84 (1) and H···H = 1.39 (1) Å, and with Uiso(H) = 1.5Ueq(O). Carboxyl H (H3A) atom was refined isotropically.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound. Non-H atoms are shown as 50% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, -y, -z; (ii) 2-x, 1-y, -z; (iii) x, -1+y, z.] | |
Fig. 2. (a) A view of the one-dimensional chain in the title compound. (b) A polyhedral view of the two-dimensional layer. H atoms have been omitted for clarity. | |
Fig. 3. A polyhedral view of the three-dimensional framework. H atoms have been omitted for clarity. |
[AgTb(C7H3NO4)(C7H4NO4)(C2O4)0.5(H2O)2] | Z = 2 |
Mr = 678.05 | F(000) = 646 |
Triclinic, P1 | Dx = 2.615 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.592 (3) Å | Cell parameters from 3600 reflections |
b = 8.249 (3) Å | θ = 1.4–28° |
c = 14.241 (6) Å | µ = 5.29 mm−1 |
α = 98.956 (4)° | T = 293 K |
β = 99.556 (4)° | Block, colorless |
γ = 95.839 (5)° | 0.30 × 0.24 × 0.19 mm |
V = 861.3 (6) Å3 |
Bruker APEXII CCD diffractometer | 3032 independent reflections |
Radiation source: fine-focus sealed tube | 2862 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 25.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→6 |
Tmin = 0.251, Tmax = 0.378 | k = −9→9 |
4416 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3 |
3032 reflections | (Δ/σ)max = 0.049 |
284 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
[AgTb(C7H3NO4)(C7H4NO4)(C2O4)0.5(H2O)2] | γ = 95.839 (5)° |
Mr = 678.05 | V = 861.3 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.592 (3) Å | Mo Kα radiation |
b = 8.249 (3) Å | µ = 5.29 mm−1 |
c = 14.241 (6) Å | T = 293 K |
α = 98.956 (4)° | 0.30 × 0.24 × 0.19 mm |
β = 99.556 (4)° |
Bruker APEXII CCD diffractometer | 3032 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2862 reflections with I > 2σ(I) |
Tmin = 0.251, Tmax = 0.378 | Rint = 0.018 |
4416 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.85 e Å−3 |
3032 reflections | Δρmin = −0.79 e Å−3 |
284 parameters |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.80756 (3) | 0.29706 (2) | 0.080761 (13) | 0.01369 (8) | |
Ag1 | 0.17209 (6) | 0.40250 (5) | 0.53284 (3) | 0.03343 (12) | |
O1 | 0.4372 (5) | 0.2187 (4) | 0.2009 (2) | 0.0305 (8) | |
O1W | 0.7121 (5) | 0.5291 (4) | 0.0096 (2) | 0.0278 (8) | |
H1W | 0.7742 | 0.5573 | −0.0302 | 0.042* | |
H2W | 0.6316 | 0.5904 | 0.0165 | 0.042* | |
O2 | 0.6205 (4) | 0.4300 (4) | 0.1747 (2) | 0.0255 (7) | |
O2W | 1.0914 (4) | 0.1769 (4) | 0.0759 (2) | 0.0253 (7) | |
H3W | 1.1070 | 0.1393 | 0.0200 | 0.038* | |
H4W | 1.1876 | 0.1905 | 0.1166 | 0.038* | |
O3 | 0.4778 (6) | 0.9748 (5) | 0.2896 (3) | 0.0449 (10) | |
O4 | 0.3416 (5) | 1.0334 (4) | 0.4169 (2) | 0.0346 (8) | |
O5 | 1.0531 (4) | 0.5114 (3) | 0.1239 (2) | 0.0203 (7) | |
O9 | 0.5031 (4) | 0.2064 (3) | −0.0119 (2) | 0.0209 (7) | |
N1 | 0.3034 (5) | 0.5246 (4) | 0.4335 (3) | 0.0234 (8) | |
N2 | 0.8987 (5) | 0.7556 (4) | 0.3678 (2) | 0.0192 (8) | |
C1 | 0.3576 (6) | 0.4244 (5) | 0.3627 (3) | 0.0231 (10) | |
H1 | 0.3377 | 0.3106 | 0.3601 | 0.028* | |
C2 | 0.4420 (6) | 0.4845 (5) | 0.2934 (3) | 0.0188 (9) | |
C3 | 0.4629 (6) | 0.6531 (5) | 0.2942 (3) | 0.0204 (9) | |
H3 | 0.5162 | 0.6965 | 0.2476 | 0.025* | |
C4 | 0.4032 (6) | 0.7568 (5) | 0.3654 (3) | 0.0200 (9) | |
C5 | 0.3273 (6) | 0.6886 (5) | 0.4347 (3) | 0.0208 (10) | |
H5 | 0.2917 | 0.7587 | 0.4838 | 0.025* | |
C6 | 0.5041 (6) | 0.3688 (5) | 0.2177 (3) | 0.0216 (10) | |
C7 | 0.4047 (6) | 0.9388 (6) | 0.3621 (3) | 0.0246 (10) | |
C8 | 0.9565 (6) | 0.6777 (5) | 0.2901 (3) | 0.0165 (9) | |
H8 | 0.9658 | 0.5652 | 0.2849 | 0.020* | |
C9 | 1.0023 (6) | 0.7592 (5) | 0.2182 (3) | 0.0169 (9) | |
C10 | 0.9849 (6) | 0.9277 (5) | 0.2249 (3) | 0.0168 (9) | |
H10 | 1.0142 | 0.9848 | 0.1770 | 0.020* | |
C11 | 0.9234 (6) | 1.0091 (5) | 0.3038 (3) | 0.0166 (9) | |
C12 | 0.8845 (6) | 0.9188 (5) | 0.3740 (3) | 0.0201 (9) | |
H12 | 0.8469 | 0.9732 | 0.4279 | 0.024* | |
C13 | 1.0667 (6) | 0.6684 (5) | 0.1333 (3) | 0.0151 (9) | |
C15 | 0.4376 (6) | 0.0595 (5) | −0.0196 (3) | 0.0168 (9) | |
O6 | 1.1310 (4) | 0.7500 (3) | 0.0780 (2) | 0.0211 (7) | |
C14 | 0.9003 (6) | 1.1915 (5) | 0.3113 (3) | 0.0202 (10) | |
O7 | 0.8768 (5) | 1.2673 (4) | 0.3899 (2) | 0.0328 (8) | |
O10 | 0.2771 (4) | −0.0028 (3) | −0.0543 (2) | 0.0219 (7) | |
O8 | 0.9101 (5) | 1.2520 (4) | 0.2359 (2) | 0.0262 (8) | |
H3A | 0.461 (9) | 1.076 (8) | 0.276 (4) | 0.056 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.01701 (13) | 0.01146 (12) | 0.01419 (12) | 0.00272 (8) | 0.00639 (8) | 0.00282 (8) |
Ag1 | 0.0419 (3) | 0.0381 (2) | 0.0290 (2) | 0.00612 (19) | 0.01825 (17) | 0.01948 (17) |
O1 | 0.049 (2) | 0.0185 (16) | 0.0251 (17) | 0.0037 (16) | 0.0116 (15) | 0.0024 (13) |
O1W | 0.033 (2) | 0.0227 (16) | 0.0388 (19) | 0.0149 (15) | 0.0194 (16) | 0.0180 (14) |
O2 | 0.0281 (19) | 0.0287 (17) | 0.0241 (16) | 0.0080 (15) | 0.0150 (14) | 0.0039 (13) |
O2W | 0.0241 (19) | 0.0321 (17) | 0.0215 (16) | 0.0081 (15) | 0.0070 (13) | 0.0039 (13) |
O3 | 0.067 (3) | 0.0275 (19) | 0.055 (2) | 0.018 (2) | 0.035 (2) | 0.0209 (18) |
O4 | 0.045 (2) | 0.0241 (17) | 0.0375 (19) | 0.0126 (17) | 0.0136 (17) | 0.0024 (15) |
O5 | 0.0284 (18) | 0.0129 (14) | 0.0208 (15) | 0.0011 (13) | 0.0096 (13) | 0.0029 (11) |
O9 | 0.0192 (17) | 0.0147 (14) | 0.0288 (16) | 0.0013 (13) | 0.0027 (13) | 0.0063 (12) |
N1 | 0.031 (2) | 0.025 (2) | 0.0207 (19) | 0.0084 (17) | 0.0136 (17) | 0.0089 (15) |
N2 | 0.022 (2) | 0.0199 (18) | 0.0191 (18) | 0.0048 (16) | 0.0083 (15) | 0.0085 (14) |
C1 | 0.027 (3) | 0.019 (2) | 0.028 (2) | 0.005 (2) | 0.011 (2) | 0.0102 (18) |
C2 | 0.019 (2) | 0.023 (2) | 0.016 (2) | 0.0047 (19) | 0.0063 (17) | 0.0045 (17) |
C3 | 0.020 (2) | 0.023 (2) | 0.020 (2) | 0.0026 (19) | 0.0065 (18) | 0.0074 (17) |
C4 | 0.016 (2) | 0.017 (2) | 0.027 (2) | 0.0037 (18) | 0.0038 (18) | 0.0054 (17) |
C5 | 0.022 (3) | 0.025 (2) | 0.017 (2) | 0.0078 (19) | 0.0061 (18) | 0.0011 (17) |
C6 | 0.027 (3) | 0.022 (2) | 0.017 (2) | 0.008 (2) | 0.0038 (19) | 0.0046 (17) |
C7 | 0.019 (3) | 0.026 (2) | 0.028 (2) | 0.003 (2) | 0.0013 (19) | 0.008 (2) |
C8 | 0.015 (2) | 0.017 (2) | 0.018 (2) | 0.0021 (17) | 0.0017 (17) | 0.0056 (16) |
C9 | 0.019 (2) | 0.018 (2) | 0.014 (2) | 0.0030 (18) | 0.0041 (17) | 0.0033 (16) |
C10 | 0.020 (2) | 0.016 (2) | 0.016 (2) | 0.0018 (18) | 0.0057 (17) | 0.0056 (16) |
C11 | 0.018 (2) | 0.018 (2) | 0.015 (2) | 0.0034 (18) | 0.0038 (17) | 0.0042 (16) |
C12 | 0.023 (3) | 0.023 (2) | 0.015 (2) | 0.0060 (19) | 0.0040 (18) | 0.0027 (17) |
C13 | 0.017 (2) | 0.016 (2) | 0.0119 (19) | 0.0015 (17) | 0.0021 (16) | 0.0009 (16) |
C15 | 0.021 (2) | 0.015 (2) | 0.014 (2) | 0.0039 (19) | 0.0058 (17) | 0.0000 (16) |
O6 | 0.0315 (19) | 0.0181 (15) | 0.0161 (14) | 0.0030 (14) | 0.0113 (13) | 0.0034 (12) |
C14 | 0.025 (3) | 0.017 (2) | 0.019 (2) | 0.0035 (19) | 0.0048 (18) | 0.0037 (17) |
O7 | 0.058 (3) | 0.0231 (17) | 0.0228 (17) | 0.0110 (17) | 0.0220 (16) | 0.0011 (13) |
O10 | 0.0198 (18) | 0.0157 (14) | 0.0303 (16) | 0.0015 (13) | 0.0053 (13) | 0.0041 (12) |
O8 | 0.045 (2) | 0.0196 (15) | 0.0179 (15) | 0.0103 (15) | 0.0109 (14) | 0.0071 (12) |
Tb1—O2 | 2.346 (3) | N2—C8 | 1.352 (5) |
Tb1—O5 | 2.364 (3) | N2—C12 | 1.351 (5) |
Tb1—O6i | 2.365 (3) | N2—Ag1iv | 2.162 (4) |
Tb1—O8ii | 2.317 (3) | C1—C2 | 1.388 (6) |
Tb1—O9 | 2.444 (3) | C1—H1 | 0.9300 |
Tb1—O10iii | 2.401 (3) | C2—C3 | 1.382 (6) |
Tb1—O1W | 2.421 (3) | C2—C6 | 1.494 (6) |
Tb1—O2W | 2.468 (3) | C3—C4 | 1.388 (6) |
Ag1—N1 | 2.172 (4) | C3—H3 | 0.9300 |
Ag1—N2iv | 2.162 (4) | C4—C5 | 1.386 (6) |
Ag1—O7v | 2.772 (3) | C4—C7 | 1.508 (6) |
Ag1—O7vi | 2.859 (3) | C5—H5 | 0.9300 |
Ag1—Ag1vii | 3.2867 (12) | C8—C9 | 1.381 (6) |
O1—C6 | 1.260 (5) | C8—H8 | 0.9300 |
O1W—H1W | 0.8401 | C9—C10 | 1.400 (6) |
O1W—H2W | 0.8400 | C9—C13 | 1.500 (6) |
O2—C6 | 1.263 (6) | C10—C11 | 1.391 (6) |
O2W—H3W | 0.8402 | C10—H10 | 0.9300 |
O2W—H4W | 0.8400 | C11—C12 | 1.388 (6) |
O3—C7 | 1.309 (6) | C11—C14 | 1.522 (6) |
O3—H3A | 0.90 (6) | C12—H12 | 0.9300 |
O4—C7 | 1.207 (5) | C13—O6 | 1.241 (5) |
O5—C13 | 1.273 (5) | C15—O10 | 1.260 (5) |
O9—C15 | 1.244 (5) | C15—C15iii | 1.535 (8) |
N1—C5 | 1.343 (6) | C14—O7 | 1.244 (5) |
N1—C1 | 1.348 (5) | C14—O8 | 1.262 (5) |
O8ii—Tb1—O2 | 75.61 (11) | C8—N2—Ag1iv | 114.8 (3) |
O8ii—Tb1—O6i | 141.96 (11) | C12—N2—Ag1iv | 127.0 (3) |
O2—Tb1—O6i | 142.34 (10) | N1—C1—C2 | 122.6 (4) |
O8ii—Tb1—O5 | 82.16 (11) | N1—C1—H1 | 118.7 |
O2—Tb1—O5 | 96.02 (11) | C2—C1—H1 | 118.7 |
O6i—Tb1—O5 | 89.03 (10) | C3—C2—C1 | 118.6 (4) |
O8ii—Tb1—O10iii | 81.37 (10) | C3—C2—C6 | 120.7 (4) |
O2—Tb1—O10iii | 109.81 (11) | C1—C2—C6 | 120.7 (4) |
O6i—Tb1—O10iii | 85.00 (10) | C2—C3—C4 | 119.1 (4) |
O5—Tb1—O10iii | 144.60 (10) | C2—C3—H3 | 120.5 |
O8ii—Tb1—O1W | 135.70 (10) | C4—C3—H3 | 120.5 |
O2—Tb1—O1W | 71.23 (11) | C5—C4—C3 | 119.0 (4) |
O6i—Tb1—O1W | 74.71 (10) | C5—C4—C7 | 120.2 (4) |
O5—Tb1—O1W | 73.14 (11) | C3—C4—C7 | 120.6 (4) |
O10iii—Tb1—O1W | 137.38 (11) | N1—C5—C4 | 122.3 (4) |
O8ii—Tb1—O9 | 125.23 (12) | N1—C5—H5 | 118.9 |
O2—Tb1—O9 | 75.56 (11) | C4—C5—H5 | 118.9 |
O6i—Tb1—O9 | 79.71 (11) | O1—C6—O2 | 124.7 (4) |
O5—Tb1—O9 | 146.28 (10) | O1—C6—C2 | 118.4 (4) |
O10iii—Tb1—O9 | 66.38 (9) | O2—C6—C2 | 116.9 (4) |
O1W—Tb1—O9 | 73.25 (11) | O4—C7—O3 | 126.2 (4) |
O8ii—Tb1—O2W | 73.67 (11) | O4—C7—C4 | 124.1 (4) |
O2—Tb1—O2W | 147.82 (10) | O3—C7—C4 | 109.6 (4) |
O6i—Tb1—O2W | 68.50 (10) | N2—C8—C9 | 122.3 (4) |
O5—Tb1—O2W | 70.60 (11) | N2—C8—H8 | 118.8 |
O10iii—Tb1—O2W | 74.76 (11) | C9—C8—H8 | 118.8 |
O1W—Tb1—O2W | 127.82 (11) | C8—C9—C10 | 118.9 (4) |
O9—Tb1—O2W | 131.32 (10) | C8—C9—C13 | 120.7 (4) |
N2iv—Ag1—N1 | 164.83 (14) | C10—C9—C13 | 120.4 (4) |
N2iv—Ag1—Ag1vii | 108.80 (10) | C11—C10—C9 | 119.4 (4) |
N1—Ag1—Ag1vii | 86.10 (10) | C11—C10—H10 | 120.3 |
N2iv—Ag1—O7v | 93.85 (11) | C9—C10—H10 | 120.3 |
N1—Ag1—O7v | 92.40 (13) | C12—C11—C10 | 117.9 (4) |
N1—Ag1—O7vi | 83.19 (11) | C12—C11—C14 | 122.0 (4) |
N2iv—Ag1—O7vi | 107.77 (11) | C10—C11—C14 | 120.1 (4) |
O7v—Ag1—O7vi | 108.60 (9) | N2—C12—C11 | 123.2 (4) |
Tb1—O1W—H1W | 113.8 | N2—C12—H12 | 118.4 |
Tb1—O1W—H2W | 134.5 | C11—C12—H12 | 118.4 |
H1W—O1W—H2W | 111.6 | O6—C13—O5 | 124.4 (4) |
C6—O2—Tb1 | 129.6 (3) | O6—C13—C9 | 118.5 (3) |
Tb1—O2W—H3W | 114.5 | O5—C13—C9 | 117.1 (4) |
Tb1—O2W—H4W | 131.1 | O9—C15—O10 | 126.9 (4) |
H3W—O2W—H4W | 111.7 | O9—C15—C15iii | 117.3 (5) |
C7—O3—H3A | 113 (4) | O10—C15—C15iii | 115.7 (4) |
C13—O5—Tb1 | 133.9 (3) | C13—O6—Tb1i | 137.7 (3) |
C15—O9—Tb1 | 118.8 (3) | O7—C14—O8 | 126.2 (4) |
C5—N1—C1 | 118.3 (4) | O7—C14—C11 | 118.2 (4) |
C5—N1—Ag1 | 125.6 (3) | O8—C14—C11 | 115.6 (4) |
C1—N1—Ag1 | 116.1 (3) | C15—O10—Tb1iii | 120.5 (2) |
C8—N2—C12 | 118.2 (4) | C14—O8—Tb1viii | 155.4 (3) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y−1, z; (vi) −x+1, −y+2, −z+1; (vii) −x, −y+1, −z+1; (viii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5i | 0.84 | 2.08 | 2.820 (5) | 147 |
O1W—H1W···O2Wi | 0.84 | 2.55 | 3.221 (5) | 138 |
O1W—H2W···O9ix | 0.84 | 2.05 | 2.855 (4) | 159 |
O2W—H3W···O10x | 0.84 | 2.13 | 2.839 (4) | 142 |
O2W—H4W···O1x | 0.84 | 2.04 | 2.873 (5) | 173 |
O3—H3A···O1viii | 0.90 (6) | 1.71 (7) | 2.554 (5) | 154 (6) |
C10—H10···O2Wviii | 0.93 | 2.40 | 3.314 (6) | 169 |
Symmetry codes: (i) −x+2, −y+1, −z; (viii) x, y+1, z; (ix) −x+1, −y+1, −z; (x) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [AgTb(C7H3NO4)(C7H4NO4)(C2O4)0.5(H2O)2] |
Mr | 678.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.592 (3), 8.249 (3), 14.241 (6) |
α, β, γ (°) | 98.956 (4), 99.556 (4), 95.839 (5) |
V (Å3) | 861.3 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.29 |
Crystal size (mm) | 0.30 × 0.24 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.251, 0.378 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4416, 3032, 2862 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.062, 1.09 |
No. of reflections | 3032 |
No. of parameters | 284 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.85, −0.79 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Tb1—O2 | 2.346 (3) | Tb1—O1W | 2.421 (3) |
Tb1—O5 | 2.364 (3) | Tb1—O2W | 2.468 (3) |
Tb1—O6i | 2.365 (3) | Ag1—N1 | 2.172 (4) |
Tb1—O8ii | 2.317 (3) | Ag1—N2iv | 2.162 (4) |
Tb1—O9 | 2.444 (3) | Ag1—O7v | 2.772 (3) |
Tb1—O10iii | 2.401 (3) | Ag1—O7vi | 2.859 (3) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y−1, z; (vi) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5i | 0.84 | 2.08 | 2.820 (5) | 147 |
O1W—H1W···O2Wi | 0.84 | 2.55 | 3.221 (5) | 138 |
O1W—H2W···O9vii | 0.84 | 2.05 | 2.855 (4) | 159 |
O2W—H3W···O10viii | 0.84 | 2.13 | 2.839 (4) | 142 |
O2W—H4W···O1viii | 0.84 | 2.04 | 2.873 (5) | 173 |
O3—H3A···O1ix | 0.90 (6) | 1.71 (7) | 2.554 (5) | 154 (6) |
C10—H10···O2Wix | 0.93 | 2.40 | 3.314 (6) | 169 |
Symmetry codes: (i) −x+2, −y+1, −z; (vii) −x+1, −y+1, −z; (viii) x+1, y, z; (ix) x, y+1, z. |
Acknowledgements
The authors kindly acknowledge Zhao Qing University for supporting this work.
References
Barbour, L. J. (2006). Chem. Commun. pp. 1163–1168. Web of Science CrossRef Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kepert, C. J. (2006). Chem. Commun. pp. 695–700. Web of Science CrossRef Google Scholar
Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401. Web of Science CSD CrossRef CAS Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J. Y., Yin, J. F., Tseng, T. W. & Lu, K. L. (2008). Inorg. Chem. Commun. 11, 314–317. Web of Science CSD CrossRef CAS Google Scholar
Zhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kepert, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005). Pyridine-3,5-dicarboxylic acid (H2pydc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct lanthanide–transition heterometallic complex via the carboxyl O atoms binding to lanthanides and N atoms bonding to transition metal ions such as AgI or CuI (Wu et al., 2008). On the basis of above considerations, we utilize H2pydc, mixed 4d–4f metal ions and nitric acid as our building blocks. A new three-dimensional 4d–4f coordination framework resulted from the hydrothermal treatment of Tb2O3, AgNO3, oxalic acid, H2pydc and nitric acid in water.
As depicted in Fig. 1, the asymmtric unit of the title compound contains one TbIII ion, one AgI ion, half an oxalate ligand, one pydc ligand, one Hpydc ligand and two water molecules. The TbIII ion is eight-coordinated in a distorted square-antiprismatic coordination geometry by three O atoms from three different pydc ligands, one O atom from one Hpydc ligand, two O atoms from one oxalate ligand and two water molecules. The AgI ion is located in an almost linear configuration, defined by two N atoms from one pydc and one Hpydc ligands. The carboxylate groups of the pydc and Hpydc ligands link TbIII center to form a one-dimensional chain with a shortest Tb···Tb distance of 5.261 (3) Å (Fig. 2a). The oxalate adopts tetradentate bischelating coordination mode to connect the neighboring chains into a two-dimensional layer (Fig. 2b). These layers are further assembled via [Ag(pydc)(Hpydc)] pillars into a three-dimensional coordination framework (Fig. 3). O—H···O and C—H···O hydrogen bonds (Table 1) involving the carboxyl group and coordinated water molecules enhance the stability of the three-dimensional network.