metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1247-m1248

(μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4N2,O3:N1,O5)-μ-chlorido-tetra­pyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: malinachem@mail.ru

(Received 7 September 2009; accepted 21 September 2009; online 26 September 2009)

The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis.

Related literature

For other 3,5-substituted-1H-pyrazolate complexes, see: Driessen et al. (2003[Driessen, W. L., Chang, L., Finnazo, C., Gorter, S., Rehorst, D., Reedijk, J., Lutz, M. & Spek, A. L. (2003). Inorg. Chim. Acta, 350, 25-31.]); Eisenwiener et al. (2007[Eisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218-233.]); King et al. (2004[King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852-861.]); Li (2005[Li, X.-H. (2005). Acta Cryst. E61, m2405-m2407.]); Penkova et al. (2008[Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428-2436.]); Tretyakov et al. (2008[Tretyakov, E. V., Tolstikov, S. E., Gorelik, E. V., Fedin, M. V., Romanenko, G. V., Bogomyakov, A. S. & Ovcharenko, V. I. (2008). Polyhedron, 27, 739-749.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O

  • Mr = 740.61

  • Monoclinic, P 21 /c

  • a = 16.4130 (4) Å

  • b = 12.6351 (2) Å

  • c = 16.5739 (4) Å

  • β = 107.2145 (12)°

  • V = 3283.12 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 100 K

  • 0.24 × 0.16 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.718, Tmax = 0.832

  • 45344 measured reflections

  • 8719 independent reflections

  • 6355 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.03

  • 8719 reflections

  • 402 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9814 (18)
Cu1—N3 2.0609 (18)
Cu1—N4 2.0371 (18)
Cu1—O1 2.5878 (17)
Cu1—Cl1 2.2634 (6)
Cu1—Cl2 2.8621 (6)
Cu2—N2 1.9549 (18)
Cu2—N5 2.0097 (18)
Cu2—N6 2.1987 (18)
Cu2—O2 2.0340 (16)
Cu2—Cl2 2.3036 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H3O⋯O3 0.95 1.82 2.734 (3) 160

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-based chelating ligands form a variety of coordination complexes providing various coordination geometries and nuclearities (Eisenwiener et al., 2007). In the synthesis of supramolecular inorganic architectures by design, the assembly of molecular units in predefined arrangements is a key goal (Tretyakov et al., 2008). Linear bi- and trinuclear copper(II) complexes are of interest as models for the active sites of multicopper proteins, like ascorbate oxidase, ceruloplasmin and laccase (Driessen et al., 2003), and are also of interest for a better understanding of the magnetic properties of multicopper compounds (Penkova et al., 2008). The preparation and crystal structure of the title compound, a novel binuclear pyrazolate complex based on 5-acetyl-4-methyl-1H-pyrazol-3-carboxylic acid incorporating two Cu centres in different coordination environments, are reported herein. The complex was obtained as a product of the hydrolytic cleavage of L (see Scheme 2) in the presence of Cu ions.

In the molecular structure, the CuII atoms adopt different types of coordination geometries (Fig. 1). The geometry around Cu2 is distorted square-pyramidal. The Cu2—N2 bond distance is 1.9549 (18) Å (Table 1), close to those observed in the pyrazolato-bridged, linear trinuclear CuII complex reported by Driessen et al. (2003) [average Cu—N = 1.965 (5) Å]. The carboxylate group is in the basal plane with Cu2—O2 distance similar to that observed in the structure reported by Li (2005) [Cu—O = 2.016 (3) Å]. The N atom of a pyridine molecule occupies the apical position with Cu2—N6 distance of 2.1987 (18) Å. The Cu1 atom is situated in a slightly distorted octahedral environment formed by two N atoms belonging to the pyridine molecules occupying the axial positions, two Cl atoms (one of which is bridging) and N and O atoms of the pyrazolate ligand providing an N,O-chelating coordination mode with Cu—N = 1.9814 (18) Å.

The pyrazolate ring and one Cl atom bridge two CuII ions. The intermetallic separation Cu1—Cu2 is 3.9067 (4) Å, which is similar to that seen in the structure reported by King et al. (2004) (3.962 Å).

The crystal packing is presented in Fig. 2. An O—H···O hydrogen bond connects the complex molecule and propan-2-ol solvent molecule in pair. These units are stacked along the crystallographic b axis, forming a column-like structure. The two pyridine molecules interact through an intramolecular π–stacking interaction with a distance of 3.869 (1) Å between the centroids of the pyridine rings in the complex.

Related literature top

For related literature on 3,5-substituted-1H-pyrazolate complexes, see: Driessen et al. (2003); Eisenwiener et al. (2007); King et al. (2004); Li (2005); Penkova et al. (2008); Tretyakov et al. (2008).

Experimental top

Copper(II) chloride dihydrate (0.05 g, 0.29 mmol) was dissolved in DMF (4 ml), and mixed with solution of L (0.078 g, 0.29 mmol) in DMF (3 ml). Then to the reaction mixture pyridine was added within 24 h . Blue block-shaped crystals of the title compound were obtained upon slow diffusion of propan-2-ol vapour into dark-green solution during two weeks (the solution turns blue over time). Analysis calculated for C30H34Cl2Cu2N6O4: C 48.61, H 4.59, N 11.34%; found: C 48.45, H 4.70, N 11.43%.

Refinement top

H atom attached to O atom was located from the difference Fourier map, and refined with Uiso = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95–1.00 Å and with Uiso = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound.
[Figure 3] Fig. 3. The structural formula of L.
(µ-3-Acetyl-5-carboxylato-4-methylpyrazolido-(µ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3: N1,O5)-µ-chlorido-tetrapyridine-1κ2N, 2κ2N-chlorido-1κCl-dicopper(II) propan-2-ol solvate top
Crystal data top
[Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8OF(000) = 1520
Mr = 740.61Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14278 reflections
a = 16.4130 (4) Åθ = 1.0–30.0°
b = 12.6351 (2) ŵ = 1.50 mm1
c = 16.5739 (4) ÅT = 100 K
β = 107.2145 (12)°Block, green-blue
V = 3283.12 (12) Å30.24 × 0.16 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8719 independent reflections
Radiation source: fine-focus sealed tube6355 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 29.0°, θmin = 2.6°
ϕ and ω scans with κ offseth = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.718, Tmax = 0.832l = 2122
45344 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.5874P]
where P = (Fo2 + 2Fc2)/3
8719 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8OV = 3283.12 (12) Å3
Mr = 740.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4130 (4) ŵ = 1.50 mm1
b = 12.6351 (2) ÅT = 100 K
c = 16.5739 (4) Å0.24 × 0.16 × 0.13 mm
β = 107.2145 (12)°
Data collection top
Nonius KappaCCD
diffractometer
8719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6355 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.832Rint = 0.058
45344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.59 e Å3
8719 reflectionsΔρmin = 0.47 e Å3
402 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.152430 (17)0.09197 (2)0.372827 (16)0.01651 (7)
Cu20.227801 (17)0.202366 (19)0.406284 (16)0.01633 (7)
Cl10.03110 (3)0.17696 (4)0.37302 (3)0.02075 (12)
Cl20.09566 (3)0.12326 (4)0.35994 (3)0.01988 (12)
O10.25807 (11)0.24098 (12)0.36521 (10)0.0256 (4)
O20.34674 (10)0.26096 (12)0.42092 (9)0.0216 (3)
O30.47931 (11)0.21282 (13)0.42382 (11)0.0305 (4)
H3O0.51890.28450.34810.046*
O40.55635 (13)0.32508 (17)0.32569 (13)0.0460 (5)
N10.26482 (11)0.02909 (13)0.37947 (11)0.0167 (4)
N20.28640 (12)0.07195 (13)0.39256 (11)0.0165 (4)
N30.12367 (12)0.10132 (14)0.24327 (11)0.0181 (4)
N40.18472 (12)0.08623 (13)0.50126 (11)0.0186 (4)
N50.18432 (12)0.35174 (14)0.38697 (11)0.0191 (4)
N60.24312 (12)0.20815 (14)0.54257 (11)0.0207 (4)
C10.33529 (14)0.08399 (17)0.37618 (13)0.0179 (4)
C20.32611 (15)0.19962 (17)0.36623 (14)0.0208 (5)
C30.40018 (16)0.26389 (19)0.36067 (16)0.0293 (6)
H3A0.38270.33800.34980.044*
H3B0.44620.25880.41400.044*
H3C0.42040.23720.31450.044*
C40.40414 (14)0.01443 (18)0.38640 (13)0.0202 (5)
C50.49426 (15)0.0362 (2)0.38719 (15)0.0266 (5)
H5A0.52510.03080.39040.040*
H5B0.49410.07380.33540.040*
H5C0.52250.08000.43630.040*
C60.36967 (14)0.08353 (17)0.39700 (13)0.0180 (5)
C70.40334 (15)0.19301 (18)0.41462 (13)0.0210 (5)
C80.09276 (14)0.19093 (17)0.20156 (14)0.0205 (5)
H80.08520.25090.23320.025*
C90.07149 (15)0.19954 (18)0.11467 (15)0.0240 (5)
H90.05030.26440.08740.029*
C100.08148 (16)0.1127 (2)0.06806 (15)0.0275 (5)
H100.06670.11630.00820.033*
C110.11359 (16)0.02000 (19)0.11047 (15)0.0290 (6)
H110.12120.04110.08010.035*
C120.13440 (15)0.01797 (18)0.19762 (15)0.0236 (5)
H120.15730.04540.22640.028*
C130.13414 (15)0.03639 (17)0.53964 (14)0.0220 (5)
H130.08460.00150.50560.026*
C140.15093 (16)0.03359 (19)0.62622 (15)0.0276 (6)
H140.11380.00290.65110.033*
C150.22260 (18)0.0847 (2)0.67623 (16)0.0328 (6)
H150.23540.08440.73600.039*
C160.27560 (17)0.1365 (2)0.63733 (16)0.0335 (6)
H160.32540.17210.67010.040*
C170.25461 (16)0.13519 (19)0.55032 (15)0.0264 (5)
H170.29110.17040.52400.032*
C180.23103 (16)0.42893 (18)0.43517 (14)0.0247 (5)
H180.28270.41030.47670.030*
C190.20695 (16)0.53372 (17)0.42661 (15)0.0261 (5)
H190.24110.58610.46210.031*
C200.13255 (16)0.56161 (18)0.36572 (14)0.0241 (5)
H200.11460.63340.35880.029*
C210.08464 (14)0.48361 (17)0.31503 (14)0.0202 (5)
H210.03350.50090.27220.024*
C220.11246 (14)0.37959 (17)0.32779 (13)0.0183 (5)
H220.07920.32590.29310.022*
C230.31973 (18)0.1915 (2)0.59788 (16)0.0394 (7)
H230.36640.17730.57670.047*
C240.33449 (19)0.1939 (3)0.68440 (16)0.0445 (8)
H240.38990.18100.72170.053*
C250.26752 (18)0.2153 (2)0.71528 (16)0.0342 (6)
H250.27550.21640.77440.041*
C260.18849 (16)0.23518 (19)0.65927 (15)0.0273 (5)
H260.14140.25260.67910.033*
C270.17882 (15)0.22930 (17)0.57336 (14)0.0214 (5)
H270.12380.24090.53490.026*
C280.6574 (2)0.4623 (3)0.3462 (2)0.0615 (10)
H28A0.70520.41270.35470.092*
H28B0.67750.52760.37760.092*
H28C0.63420.47850.28590.092*
C290.58876 (19)0.4128 (2)0.37756 (18)0.0424 (7)
H290.61530.38710.43660.051*
C300.5193 (3)0.4877 (3)0.3776 (3)0.0765 (12)
H30A0.49810.52100.32190.115*
H30B0.54110.54220.42060.115*
H30C0.47270.44920.39030.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01760 (15)0.01758 (14)0.01463 (14)0.00056 (10)0.00519 (11)0.00005 (10)
Cu20.01967 (15)0.01512 (13)0.01380 (14)0.00081 (10)0.00435 (11)0.00014 (10)
Cl10.0200 (3)0.0225 (3)0.0202 (3)0.0027 (2)0.0066 (2)0.0001 (2)
Cl20.0195 (3)0.0164 (2)0.0236 (3)0.0010 (2)0.0061 (2)0.0000 (2)
O10.0276 (10)0.0197 (8)0.0289 (9)0.0014 (7)0.0077 (8)0.0007 (7)
O20.0233 (9)0.0209 (8)0.0198 (8)0.0023 (7)0.0049 (7)0.0015 (6)
O30.0215 (9)0.0342 (9)0.0352 (10)0.0071 (7)0.0076 (8)0.0003 (8)
O40.0422 (12)0.0577 (13)0.0413 (12)0.0113 (10)0.0171 (10)0.0037 (10)
N10.0183 (10)0.0164 (9)0.0145 (9)0.0024 (7)0.0036 (8)0.0000 (7)
N20.0176 (10)0.0176 (9)0.0139 (9)0.0010 (7)0.0039 (7)0.0000 (7)
N30.0175 (10)0.0202 (9)0.0170 (9)0.0015 (7)0.0055 (8)0.0003 (7)
N40.0209 (10)0.0178 (9)0.0172 (9)0.0029 (7)0.0057 (8)0.0006 (7)
N50.0263 (11)0.0173 (9)0.0134 (9)0.0013 (8)0.0053 (8)0.0004 (7)
N60.0218 (10)0.0239 (10)0.0162 (9)0.0068 (8)0.0052 (8)0.0009 (7)
C10.0181 (11)0.0231 (11)0.0119 (10)0.0032 (9)0.0037 (9)0.0011 (8)
C20.0244 (13)0.0216 (11)0.0148 (11)0.0051 (10)0.0034 (9)0.0008 (9)
C30.0271 (14)0.0269 (12)0.0322 (14)0.0080 (10)0.0061 (11)0.0076 (10)
C40.0195 (12)0.0276 (12)0.0132 (11)0.0024 (9)0.0044 (9)0.0003 (9)
C50.0177 (12)0.0361 (14)0.0256 (13)0.0032 (10)0.0061 (10)0.0036 (10)
C60.0196 (12)0.0230 (11)0.0112 (10)0.0000 (9)0.0042 (9)0.0001 (8)
C70.0218 (13)0.0269 (12)0.0128 (11)0.0027 (10)0.0029 (9)0.0034 (9)
C80.0229 (12)0.0190 (11)0.0204 (11)0.0013 (9)0.0077 (10)0.0005 (9)
C90.0236 (13)0.0240 (12)0.0252 (12)0.0005 (10)0.0085 (10)0.0066 (10)
C100.0279 (14)0.0381 (14)0.0177 (12)0.0016 (11)0.0085 (10)0.0013 (10)
C110.0365 (15)0.0288 (13)0.0214 (12)0.0064 (11)0.0083 (11)0.0038 (10)
C120.0256 (13)0.0231 (12)0.0232 (12)0.0044 (10)0.0087 (10)0.0002 (9)
C130.0265 (13)0.0188 (11)0.0218 (12)0.0001 (9)0.0088 (10)0.0011 (9)
C140.0382 (16)0.0264 (12)0.0223 (12)0.0020 (11)0.0151 (12)0.0036 (10)
C150.0403 (16)0.0418 (15)0.0165 (12)0.0052 (12)0.0084 (11)0.0013 (11)
C160.0316 (15)0.0447 (16)0.0214 (13)0.0066 (12)0.0035 (11)0.0069 (11)
C170.0242 (13)0.0336 (13)0.0209 (12)0.0032 (10)0.0060 (10)0.0003 (10)
C180.0301 (14)0.0225 (12)0.0172 (11)0.0003 (10)0.0002 (10)0.0012 (9)
C190.0363 (15)0.0171 (11)0.0219 (12)0.0024 (10)0.0040 (11)0.0043 (9)
C200.0356 (14)0.0169 (11)0.0236 (12)0.0017 (10)0.0146 (11)0.0046 (9)
C210.0192 (12)0.0238 (11)0.0189 (11)0.0024 (9)0.0076 (9)0.0055 (9)
C220.0194 (12)0.0206 (11)0.0157 (11)0.0024 (9)0.0064 (9)0.0002 (8)
C230.0300 (15)0.072 (2)0.0174 (13)0.0209 (14)0.0083 (11)0.0048 (13)
C240.0322 (16)0.080 (2)0.0190 (13)0.0164 (15)0.0046 (12)0.0038 (14)
C250.0401 (16)0.0475 (16)0.0159 (12)0.0050 (13)0.0095 (12)0.0070 (11)
C260.0268 (14)0.0343 (13)0.0254 (13)0.0073 (11)0.0147 (11)0.0083 (10)
C270.0211 (12)0.0210 (11)0.0220 (12)0.0021 (9)0.0064 (10)0.0022 (9)
C280.063 (2)0.090 (3)0.0310 (17)0.040 (2)0.0120 (16)0.0058 (17)
C290.0398 (17)0.0536 (18)0.0330 (16)0.0096 (14)0.0097 (13)0.0041 (13)
C300.082 (3)0.056 (2)0.095 (3)0.008 (2)0.030 (2)0.010 (2)
Geometric parameters (Å, º) top
Cu1—N11.9814 (18)C9—H90.9500
Cu1—N32.0609 (18)C10—C111.387 (3)
Cu1—N42.0371 (18)C10—H100.9500
Cu1—O12.5878 (17)C11—C121.383 (3)
Cu1—Cl12.2634 (6)C11—H110.9500
Cu1—Cl22.8621 (6)C12—H120.9500
Cu2—N21.9549 (18)C13—C141.379 (3)
Cu2—N52.0097 (18)C13—H130.9500
Cu2—N62.1987 (18)C14—C151.382 (4)
Cu2—O22.0340 (16)C14—H140.9500
Cu2—Cl22.3036 (6)C15—C161.390 (4)
O1—C21.229 (3)C15—H150.9500
O2—C71.292 (3)C16—C171.380 (3)
O3—C71.236 (3)C16—H160.9500
O4—C291.407 (3)C17—H170.9500
O4—H3O0.9550C18—C191.377 (3)
N1—N21.325 (2)C18—H180.9500
N1—C11.364 (3)C19—C201.380 (3)
N2—C61.355 (3)C19—H190.9500
N3—C121.338 (3)C20—C211.380 (3)
N3—C81.345 (3)C20—H200.9500
N4—C131.343 (3)C21—C221.387 (3)
N4—C171.344 (3)C21—H210.9500
N5—C221.339 (3)C22—H220.9500
N5—C181.347 (3)C23—C241.382 (4)
N6—C271.328 (3)C23—H230.9500
N6—C231.335 (3)C24—C251.370 (4)
C1—C41.402 (3)C24—H240.9500
C1—C21.473 (3)C25—C261.376 (4)
C2—C31.487 (3)C25—H250.9500
C3—H3A0.9800C26—C271.387 (3)
C3—H3B0.9800C26—H260.9500
C3—H3C0.9800C27—H270.9500
C4—C61.393 (3)C28—C291.509 (4)
C4—C51.501 (3)C28—H28A0.9800
C5—H5A0.9800C28—H28B0.9800
C5—H5B0.9800C28—H28C0.9800
C5—H5C0.9800C29—C301.482 (5)
C6—C71.486 (3)C29—H291.0000
C8—C91.382 (3)C30—H30A0.9800
C8—H80.9500C30—H30B0.9800
C9—C101.379 (3)C30—H30C0.9800
N1—Cu1—N488.72 (7)C10—C9—C8119.1 (2)
N1—Cu1—N390.19 (7)C10—C9—H9120.5
N4—Cu1—N3177.86 (7)C8—C9—H9120.5
N1—Cu1—Cl1174.40 (5)C9—C10—C11118.6 (2)
N4—Cu1—Cl188.41 (5)C9—C10—H10120.7
N3—Cu1—Cl192.52 (5)C11—C10—H10120.7
N1—Cu1—O170.62 (7)C12—C11—C10119.0 (2)
N3—Cu1—O181.82 (6)C12—C11—H11120.5
N4—Cu1—O196.09 (6)C10—C11—H11120.5
Cl1—Cu1—O1104.91 (4)N3—C12—C11122.9 (2)
Cl2—Cu1—O1153.60 (4)N3—C12—H12118.6
N1—Cu1—Cl284.28 (5)C11—C12—H12118.6
N3—Cu1—Cl290.44 (5)N4—C13—C14122.9 (2)
N4—Cu1—Cl291.29 (5)N4—C13—H13118.5
Cl1—Cu1—Cl2100.59 (2)C14—C13—H13118.5
N2—Cu2—N5159.53 (7)C13—C14—C15119.0 (2)
N2—Cu2—O280.38 (7)C13—C14—H14120.5
N5—Cu2—O287.72 (7)C15—C14—H14120.5
N2—Cu2—N6103.71 (7)C14—C15—C16118.7 (2)
N5—Cu2—N693.42 (7)C14—C15—H15120.7
O2—Cu2—N692.95 (7)C16—C15—H15120.7
N2—Cu2—Cl292.44 (5)C17—C16—C15118.8 (2)
N5—Cu2—Cl295.71 (6)C17—C16—H16120.6
O2—Cu2—Cl2166.73 (5)C15—C16—H16120.6
N6—Cu2—Cl299.62 (5)N4—C17—C16122.8 (2)
C7—O2—Cu2115.87 (14)N4—C17—H17118.6
C29—O4—H3O110.8C16—C17—H17118.6
N2—N1—C1107.93 (18)N5—C18—C19122.6 (2)
N2—N1—Cu1126.48 (14)N5—C18—H18118.7
C1—N1—Cu1125.49 (14)C19—C18—H18118.7
N1—N2—C6109.22 (17)C18—C19—C20119.1 (2)
N1—N2—Cu2135.57 (15)C18—C19—H19120.5
C6—N2—Cu2115.20 (14)C20—C19—H19120.5
C12—N3—C8117.68 (19)C21—C20—C19119.0 (2)
C12—N3—Cu1121.06 (15)C21—C20—H20120.5
C8—N3—Cu1121.26 (15)C19—C20—H20120.5
C13—N4—C17117.8 (2)C20—C21—C22118.8 (2)
C13—N4—Cu1120.37 (15)C20—C21—H21120.6
C17—N4—Cu1121.81 (15)C22—C21—H21120.6
C22—N5—C18117.88 (19)N5—C22—C21122.7 (2)
C22—N5—Cu2123.91 (15)N5—C22—H22118.7
C18—N5—Cu2118.20 (15)C21—C22—H22118.7
C27—N6—C23117.5 (2)N6—C23—C24123.3 (2)
C27—N6—Cu2122.62 (15)N6—C23—H23118.3
C23—N6—Cu2119.87 (16)C24—C23—H23118.3
N1—C1—C4109.83 (19)C25—C24—C23118.6 (3)
N1—C1—C2116.7 (2)C25—C24—H24120.7
C4—C1—C2133.4 (2)C23—C24—H24120.7
O1—C2—C1119.1 (2)C24—C25—C26119.0 (2)
O1—C2—C3121.5 (2)C24—C25—H25120.5
C1—C2—C3119.3 (2)C26—C25—H25120.5
C2—C3—H3A109.5C25—C26—C27118.8 (2)
C2—C3—H3B109.5C25—C26—H26120.6
H3A—C3—H3B109.5C27—C26—H26120.6
C2—C3—H3C109.5N6—C27—C26122.9 (2)
H3A—C3—H3C109.5N6—C27—H27118.6
H3B—C3—H3C109.5C26—C27—H27118.6
C6—C4—C1103.25 (19)C29—C28—H28A109.5
C6—C4—C5126.7 (2)C29—C28—H28B109.5
C1—C4—C5130.0 (2)H28A—C28—H28B109.5
C4—C5—H5A109.5C29—C28—H28C109.5
C4—C5—H5B109.5H28A—C28—H28C109.5
H5A—C5—H5B109.5H28B—C28—H28C109.5
C4—C5—H5C109.5O4—C29—C30110.6 (3)
H5A—C5—H5C109.5O4—C29—C28107.5 (2)
H5B—C5—H5C109.5C30—C29—C28112.9 (3)
N2—C6—C4109.76 (19)O4—C29—H29108.6
N2—C6—C7114.94 (19)C30—C29—H29108.6
C4—C6—C7135.3 (2)C28—C29—H29108.6
O3—C7—O2125.4 (2)C29—C30—H30A109.5
O3—C7—C6121.0 (2)C29—C30—H30B109.5
O2—C7—C6113.6 (2)H30A—C30—H30B109.5
N3—C8—C9122.8 (2)C29—C30—H30C109.5
N3—C8—H8118.6H30A—C30—H30C109.5
C9—C8—H8118.6H30B—C30—H30C109.5
N2—Cu2—O2—C70.53 (15)C4—C1—C2—C33.8 (4)
N5—Cu2—O2—C7162.76 (15)N1—C1—C4—C60.8 (2)
N6—Cu2—O2—C7103.94 (15)C2—C1—C4—C6176.6 (2)
Cl2—Cu2—O2—C757.4 (3)N1—C1—C4—C5179.8 (2)
N4—Cu1—N1—N278.06 (17)C2—C1—C4—C52.8 (4)
N3—Cu1—N1—N2103.78 (17)N1—N2—C6—C40.1 (2)
N4—Cu1—N1—C197.87 (17)Cu2—N2—C6—C4179.96 (14)
N3—Cu1—N1—C180.29 (17)N1—N2—C6—C7177.94 (17)
C1—N1—N2—C60.6 (2)Cu2—N2—C6—C72.1 (2)
Cu1—N1—N2—C6177.10 (14)C1—C4—C6—N20.5 (2)
C1—N1—N2—Cu2179.44 (15)C5—C4—C6—N2179.9 (2)
Cu1—N1—N2—Cu22.9 (3)C1—C4—C6—C7176.8 (2)
N5—Cu2—N2—N1126.1 (2)C5—C4—C6—C72.6 (4)
O2—Cu2—N2—N1178.6 (2)Cu2—O2—C7—O3177.94 (17)
N6—Cu2—N2—N187.9 (2)Cu2—O2—C7—C60.4 (2)
Cl2—Cu2—N2—N112.64 (19)N2—C6—C7—O3176.8 (2)
N5—Cu2—N2—C653.8 (3)C4—C6—C7—O30.3 (4)
O2—Cu2—N2—C61.45 (14)N2—C6—C7—O21.6 (3)
N6—Cu2—N2—C692.15 (15)C4—C6—C7—O2178.8 (2)
Cl2—Cu2—N2—C6167.33 (14)C12—N3—C8—C90.5 (3)
N1—Cu1—N3—C1249.00 (18)Cu1—N3—C8—C9178.93 (17)
Cl1—Cu1—N3—C12135.90 (17)N3—C8—C9—C100.6 (4)
N1—Cu1—N3—C8131.61 (17)C8—C9—C10—C110.8 (4)
Cl1—Cu1—N3—C843.49 (17)C9—C10—C11—C120.0 (4)
N1—Cu1—N4—C13124.85 (17)C8—N3—C12—C111.3 (3)
Cl1—Cu1—N4—C1359.96 (16)Cu1—N3—C12—C11178.08 (18)
N1—Cu1—N4—C1757.93 (18)C10—C11—C12—N31.1 (4)
Cl1—Cu1—N4—C17117.26 (17)C17—N4—C13—C140.0 (3)
N2—Cu2—N5—C2284.2 (3)Cu1—N4—C13—C14177.31 (17)
O2—Cu2—N5—C22138.41 (18)N4—C13—C14—C150.4 (4)
N6—Cu2—N5—C22128.77 (18)C13—C14—C15—C160.5 (4)
Cl2—Cu2—N5—C2228.74 (17)C14—C15—C16—C170.1 (4)
N2—Cu2—N5—C1894.3 (3)C13—N4—C17—C160.4 (3)
O2—Cu2—N5—C1840.15 (17)Cu1—N4—C17—C16176.94 (19)
N6—Cu2—N5—C1852.67 (18)C15—C16—C17—N40.3 (4)
Cl2—Cu2—N5—C18152.70 (16)C22—N5—C18—C191.1 (3)
N2—Cu2—N6—C27133.26 (17)Cu2—N5—C18—C19179.71 (19)
N5—Cu2—N6—C2758.05 (18)N5—C18—C19—C200.7 (4)
O2—Cu2—N6—C27145.94 (17)C18—C19—C20—C210.2 (4)
Cl2—Cu2—N6—C2738.34 (17)C19—C20—C21—C220.8 (3)
N2—Cu2—N6—C2347.7 (2)C18—N5—C22—C210.4 (3)
N5—Cu2—N6—C23121.0 (2)Cu2—N5—C22—C21179.01 (16)
O2—Cu2—N6—C2333.1 (2)C20—C21—C22—N50.5 (3)
Cl2—Cu2—N6—C23142.7 (2)C27—N6—C23—C240.9 (4)
N2—N1—C1—C40.9 (2)Cu2—N6—C23—C24179.9 (2)
Cu1—N1—C1—C4177.46 (14)N6—C23—C24—C250.6 (5)
N2—N1—C1—C2177.02 (17)C23—C24—C25—C261.0 (4)
Cu1—N1—C1—C20.5 (3)C24—C25—C26—C272.1 (4)
N1—C1—C2—O13.2 (3)C23—N6—C27—C260.4 (3)
C4—C1—C2—O1174.1 (2)Cu2—N6—C27—C26178.65 (17)
N1—C1—C2—C3178.91 (19)C25—C26—C27—N61.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H3O···O30.951.822.734 (3)160

Experimental details

Crystal data
Chemical formula[Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O
Mr740.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.4130 (4), 12.6351 (2), 16.5739 (4)
β (°) 107.2145 (12)
V3)3283.12 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.24 × 0.16 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.718, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
45344, 8719, 6355
Rint0.058
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.03
No. of reflections8719
No. of parameters402
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—N11.9814 (18)Cu2—N21.9549 (18)
Cu1—N32.0609 (18)Cu2—N52.0097 (18)
Cu1—N42.0371 (18)Cu2—N62.1987 (18)
Cu1—O12.5878 (17)Cu2—O22.0340 (16)
Cu1—Cl12.2634 (6)Cu2—Cl22.3036 (6)
Cu1—Cl22.8621 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H3O···O30.951.822.734 (3)160
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241-2009).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDriessen, W. L., Chang, L., Finnazo, C., Gorter, S., Rehorst, D., Reedijk, J., Lutz, M. & Spek, A. L. (2003). Inorg. Chim. Acta, 350, 25–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationEisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218–233.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKing, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861.  Web of Science CSD CrossRef Google Scholar
First citationLi, X.-H. (2005). Acta Cryst. E61, m2405–m2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPenkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTretyakov, E. V., Tolstikov, S. E., Gorelik, E. V., Fedin, M. V., Romanenko, G. V., Bogomyakov, A. S. & Ovcharenko, V. I. (2008). Polyhedron, 27, 739–749.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1247-m1248
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds