organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl­pyridinium hydrogen sulfate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 2 July 2009; accepted 2 September 2009; online 9 September 2009)

The crystal structure of the title compound, C7H8NO+·HSO4, consists of O—H⋯Ohydrogen-bonded extended chains of hydrogen sulfate anions. Each hydrogen sulfate anion is furthermore connected to one 4-acetyl­pyridinium cation via a hydrogen bond of the N—H⋯O type.

Related literature

For the synthesis of 4-acetyl­pyridine, see: Piner et al. (1934[Piner, R. (1934). Ber. Deutsch Chem. Ges. B34, 4250-4251.]). For the crystal structure of an adduct of 4-acetyl­pyridine with penta­chloro­phenol, see: Majerz et al. (1991[Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249,109-116.]). For the crystal structures of Zn and Ni complexes of 4-acetyl­pyridine, see: Pang et al. (1994[Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203-211.]); Steffen et al. (1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1128.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO+·HSO4

  • Mr = 219.21

  • Orthorhombic, P 21 21 21

  • a = 4.6454 (9) Å

  • b = 9.597 (2) Å

  • c = 21.310 (4) Å

  • V = 950.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.935, Tmax = 0.935

  • 9843 measured reflections

  • 2156 independent reflections

  • 1622 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.170

  • S = 0.93

  • 2156 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 860 Friedel pairs

  • Flack parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.86 1.92 2.772 (5) 172
O3—H3⋯O2ii 0.82 1.76 2.565 (5) 166
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

4-Acetylpyridine may be used as a ligand in coordination compounds e.g. with Zn (Steffen & Palenik, 1977) or Ni (Pang et al., 1994). The crystal structure of 4-acetylpyridine together with pentachlorophenol is also known (Majerz et al., 1991).

The asymmetric unit of the title compound contains one 4-acetylpyridinium cation and one hydrogen sulfate anion (Fig 1). In the anion, the bond length of S1—O3 is 1.553 (6) Å compared to the average bond length of 1.438 (5) Å of the other S1—O bonds. It is therefore reasonable that the hydrogen atom of hydrogen sulfate is bonded to O3. The supramolecular structure consists of infinite chains of anions with one cation linked to each anion via an additional hydrogen bond (N1—H1B···O1 2.774 (8) Å, Fig 2).

Related literature top

For the synthesis of 4-acetylpyridine, see: Piner et al. (1934). For the crystal structure of an adduct of 4-acetylpyridine with pentachlorophenol, see: Majerz et al. (1991). For the crystal structures of Zn and Ni complexes of 4-acetylpyridine, see: Pang et al. (1994); Steffen et al. (1977).

Experimental top

4-Acetylpyridine was obtained according to the method described by Piner (1934). Reaction of equimolar amounts of 4-acetylpyridine and H2SO4 produced a precipitate. This was filtered off, dried and dissolved in 96% ethanol from which single crystals were grown by slow evaporation of the solvent at room temperature.

Refinement top

The H atom connected to O3 was discernible from difference electron-density map. Nevertheless, it was placed to the ideal position, with S1—O3—H angle tetrahedral, allowing the H atom to ride on the immediately preceding atom O3 and rotate about the S1—O3 bond, refined in a riding atom approximation with a constrained bond length of O—H = 0.82 Å. Positional parameters of the other H atoms were calculated geometrically with Car–H = 0.93 Å and CMe–H = 0.96 Å and were allowed to ride on the corresponding C atoms with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous dispersion effects, 860 Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Acetylpyridinium hydrogen sulfate top
Crystal data top
C7H8NO+·HSO4F(000) = 456
Mr = 219.21Dx = 1.533 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4231 reflections
a = 4.6454 (9) Åθ = 3.6–27.6°
b = 9.597 (2) ŵ = 0.34 mm1
c = 21.310 (4) ÅT = 298 K
V = 950.1 (3) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2156 independent reflections
Radiation source: fine-focus sealed tube1622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.935, Tmax = 0.935l = 2727
9843 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.1249P)2 + 1.8027P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2156 reflectionsΔρmax = 0.38 e Å3
129 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 860 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C7H8NO+·HSO4V = 950.1 (3) Å3
Mr = 219.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6454 (9) ŵ = 0.34 mm1
b = 9.597 (2) ÅT = 298 K
c = 21.310 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1622 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.935Rint = 0.077
9843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.38 e Å3
S = 0.93Δρmin = 0.19 e Å3
2156 reflectionsAbsolute structure: Flack (1983), 860 Friedel pairs
129 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.9101 (2)0.18577 (10)0.16383 (5)0.0475 (3)
O50.0805 (8)0.6665 (5)0.03394 (17)0.0853 (12)
O11.0236 (7)0.3041 (3)0.19787 (16)0.0655 (9)
N10.6303 (8)0.7352 (4)0.20080 (17)0.0573 (9)
H1B0.73360.76480.23150.069*
C30.3084 (8)0.6431 (4)0.10302 (18)0.0457 (9)
C10.4610 (10)0.8250 (5)0.1713 (2)0.0614 (11)
H1A0.45490.91750.18420.074*
C60.1250 (13)0.5981 (6)0.0476 (2)0.0634 (13)
C50.6477 (10)0.6005 (5)0.1849 (2)0.0548 (11)
H5A0.76740.54030.20700.066*
C40.4852 (9)0.5528 (5)0.1353 (2)0.0544 (11)
H4A0.49490.45960.12360.065*
C20.2960 (10)0.7819 (4)0.1223 (2)0.0546 (10)
H2A0.17590.84460.10170.066*
O20.6532 (7)0.2155 (4)0.1291 (2)0.0858 (12)
O31.1265 (8)0.1454 (6)0.1117 (2)0.0968 (15)
H31.28380.18020.11940.145*
O40.8942 (13)0.0646 (4)0.2026 (2)0.1068 (15)
C70.2139 (18)0.4694 (7)0.0132 (3)0.106 (2)
H7A0.07950.45100.02000.160*
H7B0.21660.39190.04170.160*
H7C0.40260.48240.00420.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0356 (4)0.0481 (5)0.0588 (5)0.0017 (4)0.0011 (4)0.0066 (5)
O50.058 (2)0.121 (3)0.077 (2)0.004 (3)0.0169 (19)0.008 (2)
O10.069 (2)0.0471 (16)0.080 (2)0.0051 (15)0.0109 (17)0.0183 (15)
N10.046 (2)0.073 (2)0.0531 (19)0.0074 (18)0.0000 (17)0.0004 (17)
C30.0372 (18)0.054 (2)0.0459 (19)0.0021 (16)0.0076 (16)0.0062 (17)
C10.063 (3)0.049 (2)0.072 (3)0.003 (2)0.002 (2)0.000 (2)
C60.059 (3)0.083 (3)0.048 (2)0.016 (3)0.009 (2)0.003 (2)
C50.044 (2)0.066 (3)0.054 (2)0.007 (2)0.0010 (19)0.0119 (19)
C40.060 (3)0.045 (2)0.058 (2)0.0030 (19)0.014 (2)0.0029 (18)
C20.055 (2)0.047 (2)0.062 (2)0.0078 (19)0.001 (2)0.0075 (19)
O20.0428 (18)0.096 (3)0.118 (3)0.0099 (17)0.021 (2)0.021 (2)
O30.0471 (19)0.145 (4)0.098 (3)0.010 (2)0.001 (2)0.060 (3)
O40.137 (4)0.073 (2)0.110 (3)0.039 (3)0.028 (3)0.022 (2)
C70.128 (6)0.110 (5)0.081 (4)0.002 (5)0.020 (4)0.039 (4)
Geometric parameters (Å, º) top
S1—O41.429 (4)C1—C21.360 (6)
S1—O21.433 (4)C1—H1A0.9300
S1—O11.447 (3)C6—C71.495 (8)
S1—O31.547 (4)C5—C41.378 (6)
O5—C61.194 (7)C5—H5A0.9300
N1—C11.325 (6)C4—H4A0.9300
N1—C51.339 (6)C2—H2A0.9300
N1—H1B0.8600O3—H30.8200
C3—C41.378 (6)C7—H7A0.9600
C3—C21.395 (6)C7—H7B0.9600
C3—C61.519 (6)C7—H7C0.9600
O4—S1—O2114.7 (3)C7—C6—C3117.5 (5)
O4—S1—O1111.6 (2)N1—C5—C4118.8 (4)
O2—S1—O1113.9 (2)N1—C5—H5A120.6
O4—S1—O3104.2 (3)C4—C5—H5A120.6
O2—S1—O3102.7 (2)C5—C4—C3120.0 (4)
O1—S1—O3108.7 (2)C5—C4—H4A120.0
C1—N1—C5122.9 (4)C3—C4—H4A120.0
C1—N1—H1B118.5C1—C2—C3119.5 (4)
C5—N1—H1B118.5C1—C2—H2A120.2
C4—C3—C2118.6 (4)C3—C2—H2A120.2
C4—C3—C6123.0 (4)S1—O3—H3109.5
C2—C3—C6118.5 (4)C6—C7—H7A109.5
N1—C1—C2120.1 (4)C6—C7—H7B109.5
N1—C1—H1A120.0H7A—C7—H7B109.5
C2—C1—H1A120.0C6—C7—H7C109.5
O5—C6—C7123.8 (5)H7A—C7—H7C109.5
O5—C6—C3118.8 (5)H7B—C7—H7C109.5
C5—N1—C1—C20.4 (7)N1—C5—C4—C30.1 (6)
C4—C3—C6—O5157.9 (4)C2—C3—C4—C50.8 (6)
C2—C3—C6—O521.8 (6)C6—C3—C4—C5179.5 (4)
C4—C3—C6—C721.9 (6)N1—C1—C2—C30.5 (7)
C2—C3—C6—C7158.4 (5)C4—C3—C2—C11.1 (6)
C1—N1—C5—C40.7 (7)C6—C3—C2—C1179.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.922.772 (5)172
O3—H3···O2ii0.821.762.565 (5)166
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H8NO+·HSO4
Mr219.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.6454 (9), 9.597 (2), 21.310 (4)
V3)950.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.935, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
9843, 2156, 1622
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.170, 0.93
No. of reflections2156
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.19
Absolute structureFlack (1983), 860 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.922.772 (5)172.0
O3—H3···O2ii0.821.762.565 (5)166.0
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMajerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249,109–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationPiner, R. (1934). Ber. Deutsch Chem. Ges. B34, 4250–4251.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1128.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds