organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­oxy­anilinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 5 August 2009; accepted 2 September 2009; online 9 September 2009)

The crystal structure of the title compound, C7H10NO+·Cl, was synthesized by the reaction of 4-methoxy­aniline and hydro­chloric acid. In the crystal structure, the ions are involved in inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For a similar organic acid-base product, see: Wu et al. (2006[Wu, B.-C., Dai, X.-Y., Xiao, F.-P. & Jin, L.-F. (2006). Acta Cryst. E62, o4327-o4328.]). This work is part of a systematic investigation of dielectric–ferroelectric materials, including organic ligands, metal–organic coordination compounds and organic–inorganic hybrid materials; see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·Cl

  • Mr = 159.61

  • Orthorhombic, P b c a

  • a = 8.905 (2) Å

  • b = 8.489 (2) Å

  • c = 21.817 (4) Å

  • V = 1649.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.924

  • 15436 measured reflections

  • 1886 independent reflections

  • 1452 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.165

  • S = 1.12

  • 1886 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl1i 0.89 2.47 3.360 (3) 179
N1—H1E⋯Cl1ii 0.89 2.50 3.209 (2) 137
N1—H1F⋯Cl1iii 0.89 2.38 3.167 (2) 147
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Acid-base reactions of organic reactands were already widely researched by ancient chemists (Wu et al., 2006). This study is a part of a systematic investigation of dielectric-ferroelectric materials, including organic ligands, metal-organic coordination compounds and organic-inorganic hybrid materials (Li et al., 2008; Hang et al., 2009). Nevertheless, 4-methoxy-anilinium chloride shows no dielectric irregularity in the temperature range of 80 K to 400 K, (m.p. 401 K).

The asymmetric unit of the title compound is composed of cationic (CH3O–C6H4–NH3+) and chloride anions (Fig 1). Intramolecular hydrogen bonds between the ammonium groups of the organic cations and the chloride anions are observed in the crystal structure.

Related literature top

For a similar organic acid-base product, see: Wu et al. (2006). For general background to this research, see: Hang et al. (2009); Li et al. (2008).

Experimental top

Single crystals of 4-methoxy-anilinium chloride are prepared by slow evaporation at room temperature of 20 mL of an ethanolic solution of 4-methoxyphenylamine and an excess of hydrogen chloride (6 mol/L).

Refinement top

All hydrogen atoms were calculated geometrically with C—H distances of 0.93 Å for aromatic C–H functions, 0.96 Å for the methyl group and 0.89 Å for the ammonium substituent. All hydrogen atoms were allowed to ride on the C and N atoms to which they are bonded with thermal parameters of Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
4-Methoxyanilinium chloride top
Crystal data top
C7H10NO+·ClF(000) = 672
Mr = 159.61Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6458 reflections
a = 8.905 (2) Åθ = 3.0–27.6°
b = 8.489 (2) ŵ = 0.40 mm1
c = 21.817 (4) ÅT = 298 K
V = 1649.3 (6) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1886 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1011
Tmin = 0.924, Tmax = 0.924l = 2728
15436 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.5018P]
where P = (Fo2 + 2Fc2)/3
1886 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C7H10NO+·ClV = 1649.3 (6) Å3
Mr = 159.61Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.905 (2) ŵ = 0.40 mm1
b = 8.489 (2) ÅT = 298 K
c = 21.817 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1886 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1452 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.924Rint = 0.058
15436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.12Δρmax = 0.25 e Å3
1886 reflectionsΔρmin = 0.54 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75138 (6)0.98509 (7)0.52111 (3)0.0470 (3)
O10.1534 (2)0.1996 (2)0.29469 (8)0.0623 (6)
N10.0252 (3)0.2494 (3)0.04478 (10)0.0617 (7)
H1D0.04680.32030.03830.093*
H1E0.00590.15530.03200.093*
H1F0.10730.27700.02420.093*
C20.1175 (3)0.2222 (3)0.23454 (10)0.0438 (6)
C50.0595 (3)0.2423 (3)0.11049 (11)0.0441 (6)
C40.1677 (3)0.1392 (3)0.13138 (12)0.0561 (7)
H4A0.22030.07620.10390.067*
C60.0179 (3)0.3363 (3)0.15081 (12)0.0492 (6)
H6A0.08950.40690.13630.059*
C70.0108 (3)0.3259 (3)0.21326 (11)0.0472 (6)
H7A0.04200.38900.24070.057*
C30.1970 (3)0.1303 (4)0.19295 (13)0.0575 (7)
H3A0.27100.06210.20710.069*
C10.0870 (4)0.3025 (4)0.33900 (13)0.0761 (10)
H1A0.12110.27400.37920.114*
H1B0.02030.29340.33710.114*
H1C0.11570.40920.33040.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0461 (4)0.0472 (4)0.0478 (4)0.0017 (2)0.0013 (3)0.0042 (2)
O10.0691 (13)0.0735 (13)0.0442 (10)0.0047 (11)0.0113 (9)0.0042 (9)
N10.0690 (16)0.0723 (16)0.0439 (12)0.0200 (12)0.0091 (11)0.0082 (11)
C20.0435 (14)0.0466 (12)0.0414 (13)0.0109 (11)0.0051 (10)0.0065 (10)
C50.0440 (13)0.0496 (13)0.0388 (12)0.0143 (11)0.0040 (10)0.0055 (10)
C40.0598 (16)0.0597 (16)0.0488 (15)0.0083 (13)0.0060 (12)0.0031 (12)
C60.0421 (13)0.0499 (14)0.0554 (14)0.0024 (11)0.0056 (11)0.0060 (12)
C70.0404 (13)0.0526 (15)0.0486 (13)0.0008 (11)0.0000 (11)0.0056 (11)
C30.0570 (16)0.0592 (16)0.0564 (16)0.0167 (14)0.0053 (13)0.0062 (13)
C10.075 (2)0.109 (3)0.0448 (15)0.011 (2)0.0045 (14)0.0147 (16)
Geometric parameters (Å, º) top
O1—C21.364 (3)C4—C31.370 (4)
O1—C11.431 (4)C4—H4A0.9300
N1—C51.467 (3)C6—C71.389 (4)
N1—H1D0.8900C6—H6A0.9300
N1—H1E0.8900C7—H7A0.9300
N1—H1F0.8900C3—H3A0.9300
C2—C71.376 (4)C1—H1A0.9600
C2—C31.390 (4)C1—H1B0.9600
C5—C61.373 (4)C1—H1C0.9600
C5—C41.380 (4)
C2—O1—C1117.9 (2)C5—C6—C7119.9 (2)
C5—N1—H1D109.5C5—C6—H6A120.0
C5—N1—H1E109.5C7—C6—H6A120.0
H1D—N1—H1E109.5C2—C7—C6119.9 (2)
C5—N1—H1F109.5C2—C7—H7A120.0
H1D—N1—H1F109.5C6—C7—H7A120.0
H1E—N1—H1F109.5C4—C3—C2120.8 (2)
O1—C2—C7125.2 (2)C4—C3—H3A119.6
O1—C2—C3115.4 (2)C2—C3—H3A119.6
C7—C2—C3119.4 (2)O1—C1—H1A109.5
C6—C5—C4120.5 (2)O1—C1—H1B109.5
C6—C5—N1119.8 (2)H1A—C1—H1B109.5
C4—C5—N1119.6 (2)O1—C1—H1C109.5
C3—C4—C5119.5 (2)H1A—C1—H1C109.5
C3—C4—H4A120.3H1B—C1—H1C109.5
C5—C4—H4A120.3
C1—O1—C2—C76.9 (4)O1—C2—C7—C6178.8 (2)
C1—O1—C2—C3173.4 (3)C3—C2—C7—C60.9 (4)
C6—C5—C4—C30.4 (4)C5—C6—C7—C20.4 (4)
N1—C5—C4—C3178.5 (2)C5—C4—C3—C21.0 (4)
C4—C5—C6—C71.1 (4)O1—C2—C3—C4178.1 (3)
N1—C5—C6—C7177.8 (2)C7—C2—C3—C41.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.892.473.360 (3)179
N1—H1E···Cl1ii0.892.503.209 (2)137
N1—H1F···Cl1iii0.892.383.167 (2)147
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10NO+·Cl
Mr159.61
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.905 (2), 8.489 (2), 21.817 (4)
V3)1649.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.924, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
15436, 1886, 1452
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.165, 1.12
No. of reflections1886
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.54

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.892.473.360 (3)179.3
N1—H1E···Cl1ii0.892.503.209 (2)136.8
N1—H1F···Cl1iii0.892.383.167 (2)147.0
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B.-C., Dai, X.-Y., Xiao, F.-P. & Jin, L.-F. (2006). Acta Cryst. E62, o4327–o4328.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds