organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2403-o2404

4-(4-Chloro­phen­yl)-1-[3-(4-fluoro­benzo­yl)prop­yl]-4-hy­droxy­piperidin-1-ium 2,4,6-tri­nitro­phenolate (haloperidol picrate)

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 7 August 2009; accepted 20 August 2009; online 9 September 2009)

In the title salt, C21H24ClFNO2+·C6H2N3O7, the dihedral angle between the aromatic rings in the cation is 16.5 (1)°. The piperidium ring adopts a slightly distorted chair conformation. Strong hydrogen-bonding inter­actions occur between the N—H and O—H functions of the 4-hydroxy­piperidin-1-ium ring and the phenolate and p-NO2 O atoms of the picrate anion. In addition, a variety of weak C—H⋯O and ππ ring inter­actions between cations and cation–anion neighbors [centroid–centroid distances = 3.597 (1) and 3.848 (10) Å] further consolidate the packing.

Related literature

For related structures, see: Casellato et al. (2003[Casellato, U., Graziani, R., Teijeira, M. & Uriarte, E. (2003). Z. Kristallogr. New Cryst. Struct. 218, 437-438.]); Datta et al. (1979[Datta, N., Mondal, P. & Pauling, P. (1979). Acta Cryst. B35, 1486-1488.]); Prasanna & Guru Row (2001[Prasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55-61.]); Reed & Schafer (1973[Reed, L. L. & Schaefer, J. P. (1973). Acta Cryst. B29, 1886-1890.]). For general background, see: Kurzawa et al. (2004[Kurzawa, M., Kowalczyk-Marzec, A. & Szlyk, E. (2004). Chem. Anal. 49, 91-100.]); Volavka & Cooper, (1987[Volavka, J. & Cooper, T. B. (1987). J. Clin. Psychopharmacol. 7, 25-30.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and for Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24ClFNO2+·C6H2N3O7

  • Mr = 604.97

  • Orthorhombic, P n a 21

  • a = 14.9089 (5) Å

  • b = 12.5934 (3) Å

  • c = 14.5074 (5) Å

  • V = 2723.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 110 K

  • 0.53 × 0.47 × 0.34 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.889, Tmax = 0.931

  • 19020 measured reflections

  • 7472 independent reflections

  • 5784 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.077

  • S = 0.92

  • 7472 reflections

  • 384 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2287 Friedel pairs

  • Flack parameter: 0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2O⋯O61Bi 0.84 2.01 2.837 (2) 168
N1A—H1N⋯O1B 0.93 1.82 2.708 (1) 160
N1A—H1N⋯O62B 0.93 2.40 3.007 (2) 123
C3A—H3AA⋯O2Aii 0.95 2.47 3.338 (2) 152
C6A—H6AA⋯O22Biii 0.95 2.41 3.286 (2) 153
C8A—H8AA⋯O21Biii 0.99 2.61 3.544 (2) 158
C8A—H8AB⋯O61Biv 0.99 2.48 3.460 (2) 170
C14A—H14A⋯O62Bi 0.99 2.59 3.486 (2) 150
C15A—H15A⋯O41Bv 0.99 2.58 3.461 (2) 148
C18A—H18A⋯O22Bvi 0.95 2.42 3.131 (2) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Haloperidol (IUPAC name: 4-[4-(4-Chlorophenyl)-4-hydroxy-1-piperidyl] -1-(4-fluorophenyl)-butan-1-one) is a typical antipsychotic and neuroleptic drug. It is in the butyrophenone class of antipsychotic medications and has pharmacological effects similar to the phenothiazines. Haloperidol possesses a strong activity against delusions and hallucinations, most likely due to an effective dopaminergic receptor blockage in the mesocortex and the limbic system of the brain. It blocks the dopaminergic action in the nigrostriatal pathways, which is the probable reason for the high frequency of extrapyramidal-motoric side-effects (dystonias, akathisia, pseudoparkinsonism). It also has minor antihistaminic and anticholinergic properties, therefore cardiovascular and anticholinergic side-effects such as hypotension, dry mouth, constipation, etc., are seen quite infrequently, compared with less potent neuroleptics such as chlorpromazine. A comprehensive review of haloperidol has found it to be an effective agent in treatment of symptoms associated with schizophrenia (Volavka & Cooper, 1987). The conductometric and spectrophotometric determination of haloperidol is described (Kurzawa et al. 2004). The crystal and molecular structures of haloperidol (Reed & Schaefer, 1979), haloperidol hydrobromide (Datta et al. 1979), flunarizine and haloperidol (Prasanna & Guru Row, 2001) and an analogue of haloperidol (Casellato et al. 2003) have been reported. In view of the importance of haloperidol and to study the hydrogen bonding patterns in the title compound, (I), C27H26O9N4ClF, a crystal structure is reported.

The title compound,C27H26N4O9ClF, crystallizes with one independent cation-anion pair [C21H24NO2ClF+. C6H2N3O7-] in the asymmetric unit. The haloperidol cation contains two halogen substituted benzene rings whose mean planes are separated by 16.5 (1)° and a 6-membered, 4-hydroxy-1-piperidinium group which adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.5747 (6) Å, 0.4 (2)° and 349 (12)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The dihedral angles between the mean planes of the fluoro and chloro substituted benzene rings and the mean plane of the 1-piperidyl group are 87.8 (5)° and 84.1 (5)°, respectively. The keto oxygen atom is disordered (O1AB = 0.72 (2) & O1AA = 0.28 (2)) with the major component (O1AB) making a twist angle of 15.4 (1)° (C1A/C7A/O1AB/C8A) with the fluorophenyl group. In the picrate anion, the mean planes of the two o-NO2 groups are twisted by 1.7 (5)° and 50.6 (7)° with respect to the mean plane of the 6-membered benzene ring (Fig. 2). The p-NO2 oxygen atoms are coplanar with respect to the mean plane of the benzene ring. The difference in the twist angles of the mean planes of the two o-NO2 groups can be partially attributed to the influence of a collection of weak hydrogen bonded interactions with neighboring cations (C8A–H8AA···O21B, C6A–H6AA···O22B, C18A–H18A···O22B) and with strong intermolecular "side" hydrogen bonds (N1A–H1N···O1B & N1A–H1N···O62B) with N1B from the 1-piperidinium group (Fig. 2, Table 1). H1N forms a bifurcated (three-center) hydrogen bond in this environment. Bond lengths and angles in both the cation and anion can be regarded as normal (Cambridge Structural Database, Version 5.30, February, 2009; Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004). Crystal packing is also influenced by additional weak ππ ring intermolecular interactions (Cg2···Cg4 = 3.597 (1) Å; 3/2 - x, -1/2 + y, 1/2 + z, and Cg3···Cg4 = 3.848 (10) Å; 2 - x, 1 - y, -1/2 + z, where Cg2 = C1A–C6A; C3g = C16A–C21A; C4g = C1B–C6B centroids).

Related literature top

For related structures, see: Casellato et al. (2003); Datta et al. (1979); Prasanna & Guru Row (2001); Reed & Schafer (1973). For general background, see: Kurzawa et al. (2004); Volavka & Cooper, (1987). For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Haloperidol (3.7 g, 0.01 mol) in 25 ml of methanol and picric acid (4.7 g, 0.01 mol) in 25 ml of methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for about a week at room temperature. The separated salt was filtered, washed thoroughly with chloroform and dried in a vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from N,N-dimethylformamide (m.p: 413- 416 K) by slow evaporation of the solvent.

Refinement top

The hydroxyl hydrogen atom (H20) was located in a Fourier map, and fixed at 0.84 Å. The rest of the H atoms were placed in their calculated positions and then refined using the riding model with O—H = 0.84, N—H = 0.93, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.17–1.49Ueq(C,O,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the C21H24NO2ClF+. C6H2N3O7- cation-anion pair showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N1A–H1N···O1B and N1A–H1N···O62B hydrogen bond interactions.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate intermolecular N–H···O & C–H···O hydrogen bond interactions which produces a network of infinite O–H···O–H···O–H chains arranged along the (011) plane of the unit cell.
4-(4-Chlorophenyl)-1-[3-(4-fluorobenzoyl)propyl]-4-hydroxypiperidin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C21H24ClFNO2+·C6H2N3O7F(000) = 1256
Mr = 604.97Dx = 1.475 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8346 reflections
a = 14.9089 (5) Åθ = 5.0–32.6°
b = 12.5934 (3) ŵ = 0.21 mm1
c = 14.5074 (5) ÅT = 110 K
V = 2723.8 (2) Å3Chunk, pale yellow
Z = 40.53 × 0.47 × 0.34 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
7472 independent reflections
Radiation source: Enhance (Mo) X-ray Source5784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 5.0°
ϕ and ω scansh = 2122
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1118
Tmin = 0.889, Tmax = 0.931l = 1521
19020 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.002
7472 reflectionsΔρmax = 0.30 e Å3
384 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 2287 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C21H24ClFNO2+·C6H2N3O7V = 2723.8 (2) Å3
Mr = 604.97Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.9089 (5) ŵ = 0.21 mm1
b = 12.5934 (3) ÅT = 110 K
c = 14.5074 (5) Å0.53 × 0.47 × 0.34 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
7472 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
5784 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.931Rint = 0.034
19020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.30 e Å3
S = 0.92Δρmin = 0.24 e Å3
7472 reflectionsAbsolute structure: Flack (1983), 2287 Friedel pairs
384 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A1.34757 (3)0.42144 (3)0.45280 (3)0.03220 (10)
F1A0.37134 (7)0.23216 (9)1.20789 (10)0.0486 (3)
O1AA0.7069 (12)0.3214 (11)0.9777 (13)0.0512 (15)0.28 (2)
O1AB0.7328 (7)0.3329 (4)0.9962 (6)0.0512 (15)0.72 (2)
O2A1.06195 (7)0.08904 (7)0.66072 (9)0.0258 (3)
H2O1.10990.06240.68050.031*
N1A0.90790 (8)0.20672 (9)0.80712 (9)0.0186 (3)
H1N0.90700.27980.81630.022*
C1A0.61183 (12)0.24014 (12)1.07122 (12)0.0276 (4)
C2A0.57077 (13)0.33404 (13)1.10171 (13)0.0310 (4)
H2AA0.59900.40031.09000.037*
C3A0.49075 (13)0.33187 (13)1.14801 (13)0.0322 (4)
H3AA0.46390.39561.16960.039*
C4A0.45020 (12)0.23523 (14)1.16256 (13)0.0321 (4)
C5A0.48711 (12)0.14068 (13)1.13194 (13)0.0316 (4)
H5AA0.45680.07521.14130.038*
C6A0.56849 (12)0.14369 (12)1.08783 (12)0.0284 (4)
H6AA0.59570.07931.06830.034*
C7A0.70033 (13)0.24665 (12)1.02276 (14)0.0337 (4)
C8A0.75704 (12)0.14780 (12)1.01555 (12)0.0282 (4)
H8AA0.72220.09200.98360.034*
H8AB0.77070.12181.07840.034*
C9A0.84472 (12)0.16547 (13)0.96399 (13)0.0292 (4)
H9AA0.86950.23590.98060.035*
H9AB0.88870.11080.98280.035*
C10A0.83088 (10)0.15999 (11)0.86049 (11)0.0207 (3)
H10A0.82300.08490.84210.025*
H10B0.77520.19860.84430.025*
C11A0.89490 (10)0.18710 (12)0.70629 (11)0.0206 (3)
H11A0.83590.21550.68700.025*
H11B0.89510.10970.69450.025*
C12A0.96782 (10)0.23902 (11)0.64998 (12)0.0219 (3)
H12A0.96420.31700.65760.026*
H12B0.95830.22260.58400.026*
C13A1.06140 (10)0.20075 (10)0.67912 (12)0.0206 (3)
C14A1.07294 (10)0.21878 (11)0.78277 (12)0.0220 (3)
H14A1.13140.18940.80260.026*
H14B1.07330.29600.79550.026*
C15A0.99821 (10)0.16667 (11)0.83823 (12)0.0218 (3)
H15A1.00100.08870.83020.026*
H15B1.00650.18260.90450.026*
C16A1.13368 (10)0.25698 (11)0.62300 (12)0.0216 (3)
C17A1.18453 (11)0.20234 (12)0.55825 (12)0.0240 (3)
H17A1.17470.12850.54970.029*
C18A1.24937 (11)0.25346 (12)0.50584 (12)0.0254 (3)
H18A1.28380.21480.46210.031*
C19A1.26326 (10)0.36054 (12)0.51775 (12)0.0240 (3)
C20A1.21366 (11)0.41814 (12)0.58018 (13)0.0272 (4)
H20A1.22310.49240.58690.033*
C21A1.14966 (11)0.36643 (12)0.63330 (12)0.0257 (3)
H21A1.11610.40560.67740.031*
O1B0.94487 (8)0.41234 (7)0.84639 (9)0.0295 (3)
O21B1.11786 (8)0.49095 (10)0.85835 (11)0.0404 (3)
O22B1.09827 (10)0.58450 (9)0.98236 (10)0.0400 (3)
O41B0.93213 (9)0.90496 (8)0.86429 (10)0.0362 (3)
O42B0.80467 (8)0.87709 (8)0.79751 (11)0.0382 (3)
O61B0.70990 (7)0.52946 (8)0.72810 (9)0.0295 (3)
O62B0.78680 (7)0.39063 (8)0.76248 (10)0.0334 (3)
N2B1.07400 (10)0.55211 (10)0.90649 (11)0.0289 (3)
N4B0.87478 (9)0.84545 (10)0.83136 (10)0.0262 (3)
N6B0.77742 (8)0.48709 (9)0.76187 (10)0.0200 (3)
C1B0.92607 (10)0.50846 (11)0.83829 (11)0.0198 (3)
C2B0.98785 (10)0.58939 (11)0.87141 (11)0.0208 (3)
C3B0.97235 (11)0.69557 (11)0.87218 (11)0.0222 (3)
H3BA1.01460.74350.89810.027*
C4B0.89221 (10)0.73212 (11)0.83366 (12)0.0213 (3)
C5B0.82938 (10)0.66318 (11)0.79824 (11)0.0197 (3)
H5BA0.77540.68960.77210.024*
C6B0.84571 (9)0.55469 (11)0.80103 (11)0.0185 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.02537 (19)0.0366 (2)0.0347 (2)0.00290 (16)0.00370 (19)0.0040 (2)
F1A0.0313 (6)0.0495 (6)0.0650 (9)0.0082 (5)0.0082 (6)0.0025 (6)
O1AA0.062 (3)0.0202 (11)0.071 (3)0.0155 (15)0.032 (3)0.0022 (14)
O1AB0.062 (3)0.0202 (11)0.071 (3)0.0155 (15)0.032 (3)0.0022 (14)
O2A0.0220 (6)0.0150 (4)0.0403 (7)0.0024 (4)0.0042 (5)0.0022 (5)
N1A0.0202 (6)0.0127 (5)0.0229 (7)0.0005 (4)0.0043 (5)0.0007 (5)
C1A0.0413 (10)0.0230 (7)0.0186 (8)0.0022 (7)0.0016 (7)0.0006 (6)
C2A0.0464 (11)0.0218 (7)0.0249 (9)0.0001 (7)0.0048 (8)0.0017 (7)
C3A0.0417 (10)0.0265 (8)0.0284 (10)0.0108 (7)0.0082 (8)0.0001 (7)
C4A0.0271 (9)0.0389 (9)0.0303 (10)0.0047 (7)0.0040 (8)0.0024 (8)
C5A0.0352 (10)0.0258 (8)0.0340 (10)0.0050 (7)0.0048 (8)0.0010 (7)
C6A0.0405 (10)0.0204 (7)0.0243 (9)0.0009 (6)0.0032 (8)0.0035 (7)
C7A0.0509 (11)0.0232 (8)0.0270 (9)0.0062 (7)0.0094 (9)0.0016 (7)
C8A0.0354 (9)0.0255 (7)0.0236 (9)0.0061 (6)0.0024 (8)0.0028 (7)
C9A0.0297 (8)0.0319 (8)0.0260 (9)0.0084 (7)0.0050 (7)0.0039 (7)
C10A0.0197 (7)0.0176 (6)0.0247 (8)0.0032 (5)0.0025 (6)0.0008 (6)
C11A0.0190 (7)0.0211 (6)0.0217 (8)0.0017 (5)0.0049 (6)0.0005 (6)
C12A0.0209 (8)0.0209 (7)0.0239 (8)0.0033 (5)0.0040 (6)0.0022 (6)
C13A0.0191 (7)0.0135 (6)0.0292 (9)0.0026 (5)0.0022 (6)0.0012 (6)
C14A0.0187 (7)0.0175 (6)0.0298 (9)0.0003 (5)0.0046 (6)0.0021 (6)
C15A0.0186 (7)0.0195 (7)0.0271 (8)0.0013 (5)0.0080 (6)0.0046 (6)
C16A0.0188 (7)0.0185 (7)0.0276 (8)0.0019 (5)0.0045 (6)0.0031 (6)
C17A0.0246 (8)0.0186 (7)0.0286 (9)0.0024 (6)0.0058 (7)0.0020 (6)
C18A0.0224 (8)0.0298 (8)0.0241 (9)0.0063 (6)0.0025 (7)0.0024 (7)
C19A0.0170 (7)0.0299 (7)0.0250 (9)0.0003 (6)0.0023 (6)0.0052 (7)
C20A0.0263 (8)0.0185 (7)0.0368 (10)0.0010 (6)0.0016 (8)0.0025 (7)
C21A0.0256 (8)0.0184 (7)0.0331 (10)0.0037 (6)0.0020 (7)0.0003 (7)
O1B0.0305 (6)0.0142 (5)0.0438 (8)0.0018 (4)0.0126 (6)0.0010 (5)
O21B0.0274 (7)0.0356 (7)0.0582 (9)0.0055 (5)0.0121 (6)0.0040 (7)
O22B0.0523 (8)0.0237 (6)0.0439 (8)0.0080 (5)0.0284 (7)0.0023 (6)
O41B0.0394 (7)0.0167 (5)0.0525 (9)0.0058 (5)0.0035 (6)0.0052 (6)
O42B0.0315 (7)0.0203 (5)0.0628 (9)0.0053 (5)0.0052 (7)0.0002 (6)
O61B0.0273 (6)0.0221 (5)0.0392 (7)0.0005 (4)0.0148 (5)0.0015 (5)
O62B0.0259 (6)0.0161 (5)0.0582 (9)0.0023 (4)0.0096 (6)0.0047 (5)
N2B0.0296 (8)0.0170 (6)0.0401 (9)0.0064 (5)0.0144 (7)0.0048 (6)
N4B0.0314 (7)0.0139 (6)0.0334 (8)0.0014 (5)0.0032 (6)0.0011 (6)
N6B0.0203 (6)0.0178 (6)0.0220 (7)0.0027 (4)0.0002 (5)0.0013 (5)
C1B0.0244 (7)0.0163 (6)0.0188 (7)0.0040 (5)0.0019 (6)0.0006 (6)
C2B0.0223 (7)0.0183 (6)0.0220 (8)0.0022 (5)0.0040 (6)0.0016 (6)
C3B0.0277 (8)0.0181 (7)0.0209 (8)0.0064 (5)0.0022 (7)0.0009 (6)
C4B0.0250 (8)0.0124 (6)0.0263 (8)0.0013 (5)0.0037 (7)0.0013 (6)
C5B0.0220 (7)0.0177 (7)0.0195 (7)0.0004 (5)0.0018 (6)0.0001 (6)
C6B0.0207 (7)0.0158 (6)0.0189 (7)0.0043 (5)0.0006 (6)0.0002 (6)
Geometric parameters (Å, º) top
Cl1A—C19A1.7482 (16)C13A—C16A1.525 (2)
F1A—C4A1.348 (2)C13A—C14A1.530 (2)
O1AA—C7A1.151 (15)C14A—C15A1.523 (2)
O1AB—C7A1.250 (6)C14A—H14A0.9900
O2A—C13A1.4320 (16)C14A—H14B0.9900
O2A—H2O0.8400C15A—H15A0.9900
N1A—C11A1.496 (2)C15A—H15B0.9900
N1A—C10A1.5047 (19)C16A—C17A1.389 (2)
N1A—C15A1.5070 (19)C16A—C21A1.407 (2)
N1A—H1N0.9300C17A—C18A1.388 (2)
C1A—C6A1.397 (2)C17A—H17A0.9500
C1A—C2A1.403 (2)C18A—C19A1.375 (2)
C1A—C7A1.497 (3)C18A—H18A0.9500
C2A—C3A1.369 (3)C19A—C20A1.376 (2)
C2A—H2AA0.9500C20A—C21A1.389 (2)
C3A—C4A1.375 (2)C20A—H20A0.9500
C3A—H3AA0.9500C21A—H21A0.9500
C4A—C5A1.385 (2)O1B—C1B1.2481 (17)
C5A—C6A1.372 (3)O21B—N2B1.228 (2)
C5A—H5AA0.9500O22B—N2B1.2284 (19)
C6A—H6AA0.9500O41B—N4B1.2333 (18)
C7A—C8A1.508 (2)O42B—N4B1.2217 (18)
C8A—C9A1.522 (2)O61B—N6B1.2403 (16)
C8A—H8AA0.9900O62B—N6B1.2229 (15)
C8A—H8AB0.9900N2B—C2B1.459 (2)
C9A—C10A1.517 (2)N4B—C4B1.4511 (18)
C9A—H9AA0.9900N6B—C6B1.4436 (18)
C9A—H9AB0.9900C1B—C6B1.438 (2)
C10A—H10A0.9900C1B—C2B1.455 (2)
C10A—H10B0.9900C2B—C3B1.357 (2)
C11A—C12A1.509 (2)C3B—C4B1.397 (2)
C11A—H11A0.9900C3B—H3BA0.9500
C11A—H11B0.9900C4B—C5B1.377 (2)
C12A—C13A1.535 (2)C5B—C6B1.3883 (18)
C12A—H12A0.9900C5B—H5BA0.9500
C12A—H12B0.9900
C13A—O2A—H2O109.5O2A—C13A—C14A109.17 (12)
C11A—N1A—C10A109.86 (11)C16A—C13A—C14A112.10 (12)
C11A—N1A—C15A110.68 (12)O2A—C13A—C12A105.20 (11)
C10A—N1A—C15A113.38 (11)C16A—C13A—C12A110.45 (12)
C11A—N1A—H1N107.6C14A—C13A—C12A109.03 (13)
C10A—N1A—H1N107.6C15A—C14A—C13A111.90 (12)
C15A—N1A—H1N107.6C15A—C14A—H14A109.2
C6A—C1A—C2A118.48 (17)C13A—C14A—H14A109.2
C6A—C1A—C7A122.43 (15)C15A—C14A—H14B109.2
C2A—C1A—C7A119.09 (15)C13A—C14A—H14B109.2
C3A—C2A—C1A121.19 (16)H14A—C14A—H14B107.9
C3A—C2A—H2AA119.4N1A—C15A—C14A110.56 (12)
C1A—C2A—H2AA119.4N1A—C15A—H15A109.5
C2A—C3A—C4A118.42 (16)C14A—C15A—H15A109.5
C2A—C3A—H3AA120.8N1A—C15A—H15B109.5
C4A—C3A—H3AA120.8C14A—C15A—H15B109.5
F1A—C4A—C3A118.94 (16)H15A—C15A—H15B108.1
F1A—C4A—C5A118.58 (16)C17A—C16A—C21A117.69 (14)
C3A—C4A—C5A122.48 (17)C17A—C16A—C13A121.10 (13)
C6A—C5A—C4A118.50 (16)C21A—C16A—C13A121.20 (14)
C6A—C5A—H5AA120.8C18A—C17A—C16A121.37 (13)
C4A—C5A—H5AA120.8C18A—C17A—H17A119.3
C5A—C6A—C1A120.89 (16)C16A—C17A—H17A119.3
C5A—C6A—H6AA119.6C19A—C18A—C17A119.40 (15)
C1A—C6A—H6AA119.6C19A—C18A—H18A120.3
O1AA—C7A—O1AB23.2 (8)C17A—C18A—H18A120.3
O1AA—C7A—C1A112.8 (8)C18A—C19A—C20A121.24 (14)
O1AB—C7A—C1A122.2 (3)C18A—C19A—Cl1A118.08 (12)
O1AA—C7A—C8A126.0 (8)C20A—C19A—Cl1A120.66 (11)
O1AB—C7A—C8A118.6 (3)C19A—C20A—C21A119.17 (13)
C1A—C7A—C8A118.76 (14)C19A—C20A—H20A120.4
C7A—C8A—C9A113.24 (13)C21A—C20A—H20A120.4
C7A—C8A—H8AA108.9C20A—C21A—C16A121.13 (15)
C9A—C8A—H8AA108.9C20A—C21A—H21A119.4
C7A—C8A—H8AB108.9C16A—C21A—H21A119.4
C9A—C8A—H8AB108.9O21B—N2B—O22B124.12 (15)
H8AA—C8A—H8AB107.7O21B—N2B—C2B118.17 (14)
C10A—C9A—C8A111.27 (14)O22B—N2B—C2B117.71 (15)
C10A—C9A—H9AA109.4O42B—N4B—O41B123.42 (12)
C8A—C9A—H9AA109.4O42B—N4B—C4B118.90 (13)
C10A—C9A—H9AB109.4O41B—N4B—C4B117.68 (13)
C8A—C9A—H9AB109.4O62B—N6B—O61B121.54 (12)
H9AA—C9A—H9AB108.0O62B—N6B—C6B120.16 (12)
N1A—C10A—C9A112.81 (12)O61B—N6B—C6B118.31 (11)
N1A—C10A—H10A109.0O1B—C1B—C6B127.98 (13)
C9A—C10A—H10A109.0O1B—C1B—C2B120.40 (14)
N1A—C10A—H10B109.0C6B—C1B—C2B111.59 (12)
C9A—C10A—H10B109.0C3B—C2B—C1B125.81 (14)
H10A—C10A—H10B107.8C3B—C2B—N2B117.65 (13)
N1A—C11A—C12A111.37 (12)C1B—C2B—N2B116.54 (12)
N1A—C11A—H11A109.4C2B—C3B—C4B117.84 (13)
C12A—C11A—H11A109.4C2B—C3B—H3BA121.1
N1A—C11A—H11B109.4C4B—C3B—H3BA121.1
C12A—C11A—H11B109.4C5B—C4B—C3B121.56 (13)
H11A—C11A—H11B108.0C5B—C4B—N4B119.33 (14)
C11A—C12A—C13A111.70 (12)C3B—C4B—N4B119.11 (13)
C11A—C12A—H12A109.3C4B—C5B—C6B119.37 (14)
C13A—C12A—H12A109.3C4B—C5B—H5BA120.3
C11A—C12A—H12B109.3C6B—C5B—H5BA120.3
C13A—C12A—H12B109.3C5B—C6B—C1B123.76 (13)
H12A—C12A—H12B107.9C5B—C6B—N6B116.43 (13)
O2A—C13A—C16A110.65 (12)C1B—C6B—N6B119.79 (12)
C6A—C1A—C2A—C3A1.0 (3)C12A—C13A—C16A—C21A67.61 (19)
C7A—C1A—C2A—C3A178.65 (17)C21A—C16A—C17A—C18A0.4 (2)
C1A—C2A—C3A—C4A1.3 (3)C13A—C16A—C17A—C18A178.89 (14)
C2A—C3A—C4A—F1A179.87 (17)C16A—C17A—C18A—C19A0.4 (2)
C2A—C3A—C4A—C5A0.2 (3)C17A—C18A—C19A—C20A0.5 (2)
F1A—C4A—C5A—C6A178.39 (17)C17A—C18A—C19A—Cl1A178.28 (12)
C3A—C4A—C5A—C6A2.0 (3)C18A—C19A—C20A—C21A1.3 (3)
C4A—C5A—C6A—C1A2.2 (3)Cl1A—C19A—C20A—C21A177.43 (13)
C2A—C1A—C6A—C5A0.8 (3)C19A—C20A—C21A—C16A1.2 (3)
C7A—C1A—C6A—C5A179.57 (17)C17A—C16A—C21A—C20A0.4 (2)
C6A—C1A—C7A—O1AA145.5 (10)C13A—C16A—C21A—C20A178.05 (15)
C2A—C1A—C7A—O1AA34.8 (10)O1B—C1B—C2B—C3B175.26 (16)
C6A—C1A—C7A—O1AB169.5 (6)C6B—C1B—C2B—C3B2.9 (2)
C2A—C1A—C7A—O1AB10.9 (7)O1B—C1B—C2B—N2B4.9 (2)
C6A—C1A—C7A—C8A17.8 (3)C6B—C1B—C2B—N2B176.93 (14)
C2A—C1A—C7A—C8A161.86 (17)O21B—N2B—C2B—C3B129.26 (17)
O1AA—C7A—C8A—C9A18.6 (12)O22B—N2B—C2B—C3B50.4 (2)
O1AB—C7A—C8A—C9A7.5 (6)O21B—N2B—C2B—C1B50.6 (2)
C1A—C7A—C8A—C9A179.51 (15)O22B—N2B—C2B—C1B129.80 (15)
C7A—C8A—C9A—C10A82.40 (18)C1B—C2B—C3B—C4B3.5 (3)
C11A—N1A—C10A—C9A173.30 (12)N2B—C2B—C3B—C4B176.28 (15)
C15A—N1A—C10A—C9A48.88 (16)C2B—C3B—C4B—C5B1.8 (2)
C8A—C9A—C10A—N1A163.71 (12)C2B—C3B—C4B—N4B178.45 (15)
C10A—N1A—C11A—C12A176.32 (11)O42B—N4B—C4B—C5B0.4 (2)
C15A—N1A—C11A—C12A57.71 (14)O41B—N4B—C4B—C5B179.46 (16)
N1A—C11A—C12A—C13A57.12 (16)O42B—N4B—C4B—C3B179.91 (16)
C11A—C12A—C13A—O2A62.24 (16)O41B—N4B—C4B—C3B0.3 (2)
C11A—C12A—C13A—C16A178.33 (13)C3B—C4B—C5B—C6B0.2 (2)
C11A—C12A—C13A—C14A54.73 (16)N4B—C4B—C5B—C6B179.53 (13)
O2A—C13A—C14A—C15A59.63 (15)C4B—C5B—C6B—C1B0.8 (2)
C16A—C13A—C14A—C15A177.41 (11)C4B—C5B—C6B—N6B179.40 (15)
C12A—C13A—C14A—C15A54.80 (15)O1B—C1B—C6B—C5B177.33 (16)
C11A—N1A—C15A—C14A57.19 (15)C2B—C1B—C6B—C5B0.6 (2)
C10A—N1A—C15A—C14A178.85 (12)O1B—C1B—C6B—N6B4.1 (3)
C13A—C14A—C15A—N1A56.78 (16)C2B—C1B—C6B—N6B177.97 (14)
O2A—C13A—C16A—C17A5.3 (2)O62B—N6B—C6B—C5B179.44 (14)
C14A—C13A—C16A—C17A127.42 (15)O61B—N6B—C6B—C5B0.5 (2)
C12A—C13A—C16A—C17A110.78 (16)O62B—N6B—C6B—C1B1.9 (2)
O2A—C13A—C16A—C21A176.32 (14)O61B—N6B—C6B—C1B178.16 (15)
C14A—C13A—C16A—C21A54.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2O···O61Bi0.842.012.837 (2)168
N1A—H1N···O1B0.931.822.708 (1)160
N1A—H1N···O62B0.932.403.007 (2)123
C3A—H3AA···O2Aii0.952.473.338 (2)152
C6A—H6AA···O22Biii0.952.413.286 (2)153
C8A—H8AA···O21Biii0.992.613.544 (2)158
C8A—H8AB···O61Biv0.992.483.460 (2)170
C14A—H14A···O62Bi0.992.593.486 (2)150
C15A—H15A···O41Bv0.992.583.461 (2)148
C18A—H18A···O22Bvi0.952.423.131 (2)131
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x+5/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H24ClFNO2+·C6H2N3O7
Mr604.97
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)110
a, b, c (Å)14.9089 (5), 12.5934 (3), 14.5074 (5)
V3)2723.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.53 × 0.47 × 0.34
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.889, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
19020, 7472, 5784
Rint0.034
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.077, 0.92
No. of reflections7472
No. of parameters384
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24
Absolute structureFlack (1983), 2287 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2O···O61Bi0.842.012.837 (2)168.1
N1A—H1N···O1B0.931.822.708 (1)160.0
N1A—H1N···O62B0.932.403.007 (2)122.7
C3A—H3AA···O2Aii0.952.473.338 (2)151.9
C6A—H6AA···O22Biii0.952.413.286 (2)153.0
C8A—H8AA···O21Biii0.992.613.544 (2)157.5
C8A—H8AB···O61Biv0.992.483.460 (2)170.2
C14A—H14A···O62Bi0.992.593.486 (2)150.1
C15A—H15A···O41Bv0.992.583.461 (2)148.3
C18A—H18A···O22Bvi0.952.423.131 (2)131.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x+5/2, y1/2, z1/2.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCasellato, U., Graziani, R., Teijeira, M. & Uriarte, E. (2003). Z. Kristallogr. New Cryst. Struct. 218, 437–438.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDatta, N., Mondal, P. & Pauling, P. (1979). Acta Cryst. B35, 1486–1488.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKurzawa, M., Kowalczyk-Marzec, A. & Szlyk, E. (2004). Chem. Anal. 49, 91–100.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationReed, L. L. & Schaefer, J. P. (1973). Acta Cryst. B29, 1886–1890.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolavka, J. & Cooper, T. B. (1987). J. Clin. Psychopharmacol. 7, 25–30.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2403-o2404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds