organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­fluoro-4,4′-(p-phenyl­enedi­­oxy)dibenzo­nitrile

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zhangjixu123@163.com

(Received 18 August 2009; accepted 1 September 2009; online 5 September 2009)

The title compound, C20H10F2N2O2, was synthesized from hydro­quinone and 3,4-difluoro­benzonitrile. The centroid of the central aromatic ring is on a crystallographic center of inversion. The dihedral angle between the central and terminal rings is 77.8 (3)°. In the crystal, chains linked by C—H⋯N bond occur.

Related literature

For the herbicidal actvity of hydro­quinone derivatives, see: Bao et al. (2007[Bao, W. J., Wu, Y. G., Mao, C. H., Chen, M. & Huang, M. Z. (2007). Fine Chem. Intermed. 37, 9-13.]). For related structures, see: Sørensen & Stuhr-Hansen (2009[Sørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.]); Luo et al. (2009[Luo, S., Zhang, J., Wang, J. & Li, B. (2009). Acta Cryst. E65, o2011.]); Liu (2002[Liu, C. L. (2002). Pesticides, 41, 38. Final page number?.]).

[Scheme 1]

Experimental

Crystal data
  • C20H10F2N2O2

  • Mr = 348.30

  • Triclinic, [P \overline 1]

  • a = 6.980 (1) Å

  • b = 7.615 (1) Å

  • c = 8.294 (1) Å

  • α = 106.376 (3)°

  • β = 93.698 (3)°

  • γ = 109.085 (3)°

  • V = 393.7 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.42 × 0.37 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 1.000

  • 2165 measured reflections

  • 1529 independent reflections

  • 1259 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.07

  • 1529 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.93 2.50 3.410 (2) 166
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

There has been growing interest in the study of hydroquinone derivatives which are important intermediates in the synthesis of herbicides (Liu, 2002. Bao et al., 2007). Only a few compounds of this kind have been structurally characterized so far. As part of our studies, we have synthesized the title compound from hydroquinone and 3,4-difluorobenzonitrile and report it's crystal structure in this article.

The crystal structure of the title compound (Fig. 1) utilizes the symmetry of the crystallographic inversion center similarily to a related selenium compound (Sørensen et al., 2009). The two terminal (C1—C7) phenyl ring and the central ring together with the attached oxygen (C8—C10/O1) form three planes. Due to crystallograhic symmetry the two terminal phenyl rings are coplanar. The terminal (C1—C7) phenyl ring plane and the central ring plane enclose a dihedral angle of 77.8 (3)°. Otherwise, the molecule is bent with the C2—O1—C8 angle of 118.25°.

In the crystal structure, intermolecular C—H···N hydrogen bonds (Tab.1) connect neighboring molecules with each other to form a one-dimensional chain that stretches along the c axis (Fig.2).

Related literature top

For the herbicidal actvity of hydroquinone derivatives, see: Bao et al. (2007); For related structres, see: Sørensen & Stuhr-Hansen (2009); Luo et al. (2009); Liu (2002).

Experimental top

A DMF (10 ml) solution of hydroquinone (1 mmol) and 3,4-difluorobenzonitrile (2 mmol) was heated to 70°C in the presence of KOH and stirred for 37 h. Then the mixture was washed with water (30 ml) and extracted with ethyl acetate (three times). The organic solvent was removed under reduced pressure. Afterwards the product was purified by column chromatography on silica (pentane - ethyl acetate mixtures). Single crystals were obtained by slow evaporation of the solvent of an ethanolic solution at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H=0.93 Å. All H atoms were included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of title compound. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, -y, -z + 2].
3,3'-Difluoro-4,4'-(p-phenylenedioxy)dibenzonitrile top
Crystal data top
C20H10F2N2O2Z = 1
Mr = 348.30F(000) = 178
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.980 (1) ÅCell parameters from 1140 reflections
b = 7.615 (1) Åθ = 5.2–54.9°
c = 8.294 (1) ŵ = 0.11 mm1
α = 106.376 (3)°T = 293 K
β = 93.698 (3)°Prismatic, colorless
γ = 109.085 (3)°0.42 × 0.37 × 0.32 mm
V = 393.7 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1529 independent reflections
Radiation source: fine-focus sealed tube1259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.782, Tmax = 1.000k = 98
2165 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0836P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1529 reflectionsΔρmax = 0.19 e Å3
119 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (6)
Crystal data top
C20H10F2N2O2γ = 109.085 (3)°
Mr = 348.30V = 393.7 (1) Å3
Triclinic, P1Z = 1
a = 6.980 (1) ÅMo Kα radiation
b = 7.615 (1) ŵ = 0.11 mm1
c = 8.294 (1) ÅT = 293 K
α = 106.376 (3)°0.42 × 0.37 × 0.32 mm
β = 93.698 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1259 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.065
2165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
1529 reflectionsΔρmin = 0.21 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31400 (15)0.41880 (17)0.64633 (14)0.0546 (4)
N10.2645 (2)0.0341 (2)1.2835 (2)0.0706 (5)
F10.21076 (16)0.59370 (13)0.94706 (13)0.0663 (4)
C10.2380 (2)0.4219 (2)0.9251 (2)0.0463 (4)
C20.2823 (2)0.3307 (2)0.77070 (18)0.0443 (4)
C30.3137 (2)0.1573 (2)0.7484 (2)0.0520 (4)
H30.34290.09410.64480.062*
C40.3023 (2)0.0761 (2)0.8780 (2)0.0524 (4)
H40.32290.04190.86190.063*
C50.2601 (2)0.1714 (2)1.03224 (18)0.0460 (4)
C60.2256 (2)0.3453 (2)1.05636 (19)0.0483 (4)
H60.19490.40841.15920.058*
C70.2590 (2)0.0934 (2)1.1718 (2)0.0535 (4)
C80.1518 (2)0.4580 (2)0.57622 (16)0.0424 (4)
C90.0514 (2)0.3477 (2)0.56761 (18)0.0478 (4)
H90.08560.24500.61290.057*
C100.2042 (2)0.6087 (2)0.50919 (18)0.0472 (4)
H100.34200.68160.51520.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0475 (6)0.0766 (8)0.0542 (7)0.0254 (5)0.0116 (5)0.0384 (6)
N10.0775 (11)0.0788 (11)0.0601 (9)0.0206 (8)0.0085 (8)0.0390 (8)
F10.0825 (8)0.0573 (7)0.0671 (7)0.0349 (5)0.0118 (5)0.0209 (5)
C10.0428 (8)0.0463 (8)0.0503 (9)0.0176 (6)0.0023 (6)0.0158 (7)
C20.0385 (7)0.0561 (9)0.0407 (8)0.0150 (6)0.0028 (6)0.0222 (7)
C30.0585 (9)0.0626 (10)0.0412 (8)0.0290 (8)0.0095 (7)0.0172 (7)
C40.0578 (9)0.0548 (9)0.0510 (9)0.0258 (7)0.0070 (7)0.0206 (7)
C50.0397 (8)0.0560 (9)0.0429 (8)0.0144 (6)0.0018 (6)0.0211 (7)
C60.0451 (8)0.0586 (9)0.0389 (8)0.0177 (7)0.0049 (6)0.0141 (7)
C70.0481 (9)0.0621 (10)0.0496 (9)0.0149 (7)0.0036 (7)0.0238 (8)
C80.0453 (8)0.0489 (8)0.0338 (7)0.0167 (6)0.0029 (6)0.0160 (6)
C90.0496 (9)0.0461 (8)0.0472 (9)0.0093 (6)0.0032 (6)0.0247 (7)
C100.0401 (8)0.0512 (9)0.0454 (8)0.0058 (6)0.0033 (6)0.0217 (7)
Geometric parameters (Å, º) top
O1—C21.3731 (16)C4—H40.9300
O1—C81.3943 (16)C5—C61.385 (2)
N1—C71.143 (2)C5—C71.442 (2)
F1—C11.3469 (17)C6—H60.9300
C1—C61.368 (2)C8—C101.3678 (19)
C1—C21.381 (2)C8—C91.377 (2)
C2—C31.372 (2)C9—C10i1.385 (2)
C3—C41.378 (2)C9—H90.9300
C3—H30.9300C10—C9i1.385 (2)
C4—C51.384 (2)C10—H100.9300
C2—O1—C8118.23 (11)C6—C5—C7119.29 (14)
F1—C1—C6119.41 (14)C1—C6—C5118.30 (14)
F1—C1—C2118.49 (13)C1—C6—H6120.8
C6—C1—C2122.08 (14)C5—C6—H6120.8
C3—C2—O1119.59 (13)N1—C7—C5177.94 (17)
C3—C2—C1118.81 (13)C10—C8—C9120.96 (13)
O1—C2—C1121.32 (13)C10—C8—O1116.41 (12)
C2—C3—C4120.60 (14)C9—C8—O1122.58 (12)
C2—C3—H3119.7C8—C9—C10i119.29 (13)
C4—C3—H3119.7C8—C9—H9120.4
C3—C4—C5119.53 (15)C10i—C9—H9120.4
C3—C4—H4120.2C8—C10—C9i119.75 (13)
C5—C4—H4120.2C8—C10—H10120.1
C4—C5—C6120.67 (13)C9i—C10—H10120.1
C4—C5—C7120.00 (15)
C8—O1—C2—C3123.31 (15)C2—C1—C6—C50.4 (2)
C8—O1—C2—C162.84 (18)C4—C5—C6—C11.1 (2)
F1—C1—C2—C3178.88 (13)C7—C5—C6—C1176.65 (13)
C6—C1—C2—C30.4 (2)C4—C5—C7—N180 (5)
F1—C1—C2—O15.0 (2)C6—C5—C7—N198 (5)
C6—C1—C2—O1173.52 (13)C2—O1—C8—C10154.42 (13)
O1—C2—C3—C4173.66 (13)C2—O1—C8—C928.1 (2)
C1—C2—C3—C40.3 (2)C10—C8—C9—C10i0.4 (2)
C2—C3—C4—C50.4 (2)O1—C8—C9—C10i177.78 (13)
C3—C4—C5—C61.2 (2)C9—C8—C10—C9i0.4 (2)
C3—C4—C5—C7176.60 (14)O1—C8—C10—C9i177.93 (12)
F1—C1—C6—C5178.13 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1ii0.932.503.410 (2)166
Symmetry code: (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H10F2N2O2
Mr348.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.980 (1), 7.615 (1), 8.294 (1)
α, β, γ (°)106.376 (3), 93.698 (3), 109.085 (3)
V3)393.7 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.37 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2165, 1529, 1259
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.07
No. of reflections1529
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.503.410 (2)166.0
Symmetry code: (i) x, y, z+2.
 

References

First citationBao, W. J., Wu, Y. G., Mao, C. H., Chen, M. & Huang, M. Z. (2007). Fine Chem. Intermed. 37, 9–13.  CAS Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, C. L. (2002). Pesticides, 41, 38. Final page number?.  Google Scholar
First citationLuo, S., Zhang, J., Wang, J. & Li, B. (2009). Acta Cryst. E65, o2011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds