organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2568-o2569

1-(4-Bromo­phen­yl)-3-(2-thienylcarbon­yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, bNational Engineering and Scientific Commission, PO Box 2801, Islamabad, Pakistan, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 28 August 2009; accepted 23 September 2009; online 30 September 2009)

The title compound, C12H9BrN2OS2, consists of two planar parts, viz. the thio­phene ring including all substituents (r.m.s. deviation 0.007 Å) and the benzene ring including the respective substituents as well as the thione group (r.m.s. deviation 0.05 Å). The inter­planar angle is 18.84 (6)°. An intra­molecular Cphen­yl—N—H⋯OC hydrogen bond is observed. The three-dimensional packing involves three types of inter­actions, viz. N—H⋯S, C—H⋯S (× 2) and Br⋯S [3.6924 (6) Å].

Related literature

For general background to the chemistry of thio­urea derivatives, see: Choi et al. (2008[Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522-4525.]); Jones et al. (2008[Jones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666-4669.]); Su et al. (2006[Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745-750.]). For related structures, see: Saeed et al. (2008a[Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.],b[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.],c[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.]). For the cytotoxicity and genotoxicity of anticancer drugs to normal cells in cancer therapy, see: Aydemir & Bilaloglu (2003[Aydemir, N. & Bilaloglu, R. (2003). Mutat. Res. 537, 43-51.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9BrN2OS2

  • Mr = 341.24

  • Monoclinic, P 21 /n

  • a = 13.1483 (6) Å

  • b = 4.4263 (2) Å

  • c = 22.671 (1) Å

  • β = 90.412 (5)°

  • V = 1319.4 (1) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.12 mm−1

  • T = 100 K

  • 0.15 × 0.05 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.558, Tmax = 1.000

  • 20285 measured reflections

  • 2712 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.06

  • 2712 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯S2i 0.85 (3) 2.74 (3) 3.5625 (16) 163 (2)
N2—H02⋯O 0.85 (3) 1.89 (3) 2.624 (2) 144 (2)
C9—H9⋯S1ii 0.95 2.89 3.704 (2) 144
C2—H2⋯S2i 0.95 2.76 3.3193 (18) 119
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The development of new antimicrobial and anticancer therapeutic agents is one of the fundamental goals in medicinal chemistry. Cytotoxicity and genotoxicity of anticancer drugs to normal cells are major problems in cancer therapy and engender the risk of inducing secondary malignancy (Aydemir et al., 2003). A dose of an anticancer drug sufficient to kill tumor cells is often toxic to the normal tissue and leads to many side effects, which, in turn, limit the efficacy of treatment. In recent years, there has been a concerted search for novel selective antitumor agents that lack many of the unpleasant side effects of conventional agents. Thiourea and its derivatives have found extensive applications in the field of medicine, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, anti-bacterial, antifungal, anticancer, antitubercular, herbicidal and insecticidal effects, and also constitute some epoxy resin curing agents containing amino functional groups (Saeed et al., 2008a,b,c). They have found broad areas of application e.g. in anion recognition, nonlinear optics and catalysis, and also display good coordination ability (Choi et al., 2008; Jones et al., 2008; Su et al., 2006). As part of our research on thiourea coordination chemistry, we are interested in the study of the influence of non-covalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzothiazoles bearing the 4-nitrobenzoylthiourea group with transition metal ions. Such coordination compounds of thiourea have been studied for various biological systems in terms of their antibacterial, antifungal and anticancer activities (Yunus et al., 2008).The importance of such work lies in the possibility that the next generation of thiourea derivatives might be more efficacious as antimicrobial and anticancer agents. However, a thorough investigation of their structure, activity and stability under biological conditions is required. These detailed investigations could be helpful in designing more potent antimicrobial and anticancer agents for therapeutic use. The condensation of acyl/aroyl thiocyanates with primary amines affords 1,3-disubstituted thioureas in excellent yields in a single step. In the present paper, the crystal structure of the title compound is reported.

The molecule (Fig. 1) consists of two planar parts: the thiophene ring plus C5 (r.m.s. deviation 0.007 Å) and the phenyl ring plus Br,N2,C6,S2 (0.05 Å), which subtend an interplanar angle of 18.84 (6)°. An intramolecular hydrogen bond N2—H02···O is observed.

The molecular packing is determined by four intermolecular contacts, each of which involves one or other of the sulfur atoms: a surprisingly long classical H bond N1—H01···S2, two weak C—H···S interactions (Table 1) and an interaction C1—S1···Br—C10 with S1···Br 3.6924 (6) Å, C1—S1···Br 165.89 (7) ° and S1···Br—C10 90.51 (6)° (operator for Br and C10: -x + 1/2, y - 3/2, -z + 1/2). The combined effect is to create a three-dimensional pattern, a small part of which is shown in Fig. 2.

Related literature top

For general background to the chemistry of thiourea derivatives, see: Choi et al. (2008); Jones et al. (2008); Su et al. (2006). For related structures, see: Saeed et al. (2008a,b,c); Yunus et al. (2008). For related literature, see: Aydemir & Bilaloglu (2003).

Experimental top

A mixture of ammonium thiocyanate (26 mmol) and 2-thiophene carbonyl chloride (26 mmol) in anhydrous acetone (60 ml) was stirred for 45 min. 2-Bromoaniline (26 mmol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into acidified cold water. The resulting dark yellow solid was filtered and washed with cold acetone. The title compound (I) was obtained as colourless needles and laths of several mm length by recrystallization of the solid from ethyl acetate. These tended to split lengthwise when cut, but eventually a fragment suitable for X-ray structure analysis was found.

Refinement top

NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å; These hydrogen U values were fixed at 1.2 × U(eq) of the parent atom. Data are 99.4% complete to 2θ 145°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (50% probability level) of the title compound.
[Figure 2] Fig. 2. Packing diagram showing the four independent contacts (dashed bonds) N—H···S, C—H···S (× 2), S···Br (see text).
1-(4-Bromophenyl)-3-(2-thienylcarbonyl)thiourea top
Crystal data top
C12H9BrN2OS2F(000) = 680
Mr = 341.24Dx = 1.718 Mg m3
Monoclinic, P21/nMelting point: 389 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 13.1483 (6) ÅCell parameters from 12273 reflections
b = 4.4263 (2) Åθ = 3.4–75.7°
c = 22.671 (1) ŵ = 7.12 mm1
β = 90.412 (5)°T = 100 K
V = 1319.4 (1) Å3Needle, colourless
Z = 40.15 × 0.05 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
2712 independent reflections
Radiation source: Nova (Cu) X-ray Source2438 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3543 pixels mm-1θmax = 75.9°, θmin = 3.9°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 54
Tmin = 0.558, Tmax = 1.000l = 2827
20285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.686P]
where P = (Fo2 + 2Fc2)/3
2712 reflections(Δ/σ)max = 0.002
171 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H9BrN2OS2V = 1319.4 (1) Å3
Mr = 341.24Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.1483 (6) ŵ = 7.12 mm1
b = 4.4263 (2) ÅT = 100 K
c = 22.671 (1) Å0.15 × 0.05 × 0.02 mm
β = 90.412 (5)°
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
2712 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2438 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 1.000Rint = 0.040
20285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
2712 reflectionsΔρmin = 0.36 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Short contact:

3.6924 (0.0006) S1 - Br_$3 165.89 (0.07) C1 - S1 - Br_$3 90.51 (0.06) S1 - Br_$3 - C10_$3 Operator for generating equivalent atoms: $3 - x + 1/2, y - 3/2, -z + 1/2

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.2923 (0.0090) x + 3.4843 (0.0018) y + 13.4394 (0.0126) z = 3.7714 (0.0071)

* -0.0064 (0.0017) C1 * -0.0022 (0.0013) C2 * -0.0022 (0.0014) C3 * 0.0106 (0.0014) C4 * -0.0078 (0.0010) S1 * 0.0079 (0.0011) C5

Rms deviation of fitted atoms = 0.0069

- 5.4364 (0.0073) x + 3.6780 (0.0010) y + 8.5062 (0.0060) z = 1.0213 (0.0056)

Angle to previous plane (with approximate e.s.d.) = 18.84 (0.06)

* -0.0768 (0.0015) C6 * 0.0657 (0.0011) S2 * 0.0104 (0.0018) C7 * 0.0477 (0.0017) C8 * 0.0508 (0.0017) C9 * 0.0153 (0.0017) C10 * 0.0055 (0.0018) C11 * 0.0033 (0.0020) C12 * -0.0663 (0.0010) Br * -0.0558 (0.0015) N2 - 0.2202 (0.0028) C5 - 0.1410 (0.0028) O -0.2122 (0.0021) N1

Rms deviation of fitted atoms = 0.0479

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.629471 (15)0.87392 (5)0.136702 (8)0.02773 (9)
S10.12627 (4)0.47575 (13)0.42493 (2)0.03066 (13)
S20.57481 (4)0.15778 (13)0.42693 (2)0.02881 (13)
O0.27346 (11)0.1628 (4)0.34866 (6)0.0306 (3)
N10.40397 (12)0.1458 (4)0.41634 (7)0.0213 (3)
H010.4194 (19)0.180 (6)0.4521 (12)0.031 (7)*
N20.44284 (13)0.1420 (4)0.33512 (7)0.0238 (4)
H020.385 (2)0.075 (6)0.3245 (11)0.032 (7)*
C10.25426 (14)0.4373 (5)0.43690 (8)0.0228 (4)
C20.28750 (14)0.6036 (4)0.48600 (8)0.0191 (4)
H20.35580.61130.49980.023*
C30.20512 (17)0.7586 (5)0.51212 (9)0.0303 (4)
H30.21220.88570.54570.036*
C40.11538 (17)0.7072 (5)0.48445 (11)0.0340 (5)
H40.05270.79160.49690.041*
C50.31026 (14)0.2406 (5)0.39652 (8)0.0226 (4)
C60.47172 (14)0.0541 (5)0.38914 (8)0.0215 (4)
C70.49109 (15)0.3288 (4)0.29299 (8)0.0213 (4)
C80.43466 (15)0.3754 (5)0.24114 (9)0.0251 (4)
H80.36830.29220.23750.030*
C90.47486 (15)0.5415 (5)0.19539 (9)0.0268 (4)
H90.43650.57320.16030.032*
C100.57114 (15)0.6608 (4)0.20115 (8)0.0228 (4)
C110.62707 (15)0.6225 (5)0.25232 (9)0.0279 (4)
H110.69280.71000.25590.033*
C120.58713 (15)0.4557 (5)0.29867 (9)0.0293 (4)
H120.62540.42880.33400.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.02733 (13)0.03447 (14)0.02145 (12)0.00217 (8)0.00351 (8)0.00748 (8)
S10.0204 (2)0.0323 (3)0.0393 (3)0.0031 (2)0.00143 (19)0.0057 (2)
S20.0253 (2)0.0430 (3)0.0181 (2)0.0118 (2)0.00757 (18)0.00732 (19)
O0.0251 (7)0.0443 (9)0.0222 (7)0.0074 (6)0.0074 (6)0.0054 (6)
N10.0211 (8)0.0283 (9)0.0145 (8)0.0019 (6)0.0039 (6)0.0029 (6)
N20.0208 (8)0.0319 (9)0.0187 (8)0.0042 (7)0.0045 (6)0.0038 (7)
C10.0193 (8)0.0278 (10)0.0212 (9)0.0023 (8)0.0005 (7)0.0055 (8)
C20.0217 (9)0.0198 (9)0.0159 (8)0.0038 (7)0.0010 (7)0.0037 (7)
C30.0391 (11)0.0255 (10)0.0266 (10)0.0025 (9)0.0095 (8)0.0036 (9)
C40.0286 (10)0.0260 (11)0.0477 (13)0.0049 (9)0.0173 (9)0.0085 (10)
C50.0207 (8)0.0272 (10)0.0199 (9)0.0008 (8)0.0020 (7)0.0027 (8)
C60.0213 (8)0.0258 (10)0.0174 (8)0.0004 (7)0.0024 (7)0.0002 (7)
C70.0230 (9)0.0247 (10)0.0162 (8)0.0002 (7)0.0009 (7)0.0014 (7)
C80.0223 (9)0.0320 (11)0.0210 (9)0.0031 (8)0.0047 (7)0.0021 (8)
C90.0290 (10)0.0331 (11)0.0184 (9)0.0002 (9)0.0053 (7)0.0041 (8)
C100.0264 (9)0.0232 (10)0.0190 (9)0.0034 (7)0.0027 (7)0.0035 (7)
C110.0222 (9)0.0376 (12)0.0238 (10)0.0027 (8)0.0029 (8)0.0053 (8)
C120.0253 (10)0.0411 (12)0.0212 (9)0.0027 (9)0.0052 (7)0.0077 (9)
Geometric parameters (Å, º) top
Br—C101.9050 (19)C7—C121.387 (3)
S1—C41.701 (3)C7—C81.401 (3)
S1—C11.7111 (19)C8—C91.379 (3)
S2—C61.6629 (19)C9—C101.377 (3)
O—C51.234 (2)C10—C111.380 (3)
N1—C51.374 (2)C11—C121.390 (3)
N1—C61.402 (3)N1—H010.85 (3)
N2—C61.338 (2)N2—H020.85 (3)
N2—C71.417 (3)C2—H20.9500
C1—C21.402 (3)C3—H30.9500
C1—C51.465 (3)C4—H40.9500
C2—C31.415 (3)C8—H80.9500
C3—C41.352 (3)C9—H90.9500
C4—S1—C191.28 (10)C11—C10—Br119.39 (15)
C5—N1—C6128.33 (16)C10—C11—C12119.92 (19)
C6—N2—C7131.42 (17)C7—C12—C11119.56 (18)
C2—C1—C5130.75 (17)C5—N1—H01117.8 (18)
C2—C1—S1111.98 (14)C6—N1—H01112.6 (18)
C5—C1—S1117.26 (14)C6—N2—H02113.9 (18)
C1—C2—C3110.59 (17)C7—N2—H02114.7 (18)
C4—C3—C2113.1 (2)C1—C2—H2124.7
C3—C4—S1113.04 (16)C3—C2—H2124.7
O—C5—N1123.18 (18)C4—C3—H3123.5
O—C5—C1121.29 (17)C2—C3—H3123.5
N1—C5—C1115.51 (16)C3—C4—H4123.5
N2—C6—N1114.16 (16)S1—C4—H4123.5
N2—C6—S2128.06 (16)C9—C8—H8119.8
N1—C6—S2117.77 (13)C7—C8—H8119.8
C12—C7—C8119.64 (18)C10—C9—H9120.3
C12—C7—N2125.84 (17)C8—C9—H9120.3
C8—C7—N2114.50 (17)C10—C11—H11120.0
C9—C8—C7120.39 (18)C12—C11—H11120.0
C10—C9—C8119.34 (18)C7—C12—H12120.2
C9—C10—C11121.11 (18)C11—C12—H12120.2
C9—C10—Br119.48 (15)
C4—S1—C1—C20.46 (16)C5—N1—C6—N25.5 (3)
C4—S1—C1—C5178.78 (16)C5—N1—C6—S2173.38 (16)
C5—C1—C2—C3179.2 (2)C6—N2—C7—C123.5 (4)
S1—C1—C2—C30.1 (2)C6—N2—C7—C8178.4 (2)
C1—C2—C3—C40.8 (3)C12—C7—C8—C91.3 (3)
C2—C3—C4—S11.1 (2)N2—C7—C8—C9177.00 (19)
C1—S1—C4—C30.92 (18)C7—C8—C9—C100.1 (3)
C6—N1—C5—O2.2 (3)C8—C9—C10—C111.4 (3)
C6—N1—C5—C1176.30 (18)C8—C9—C10—Br177.04 (16)
C2—C1—C5—O164.5 (2)C9—C10—C11—C121.4 (3)
S1—C1—C5—O16.4 (3)Br—C10—C11—C12177.09 (17)
C2—C1—C5—N117.0 (3)C8—C7—C12—C111.3 (3)
S1—C1—C5—N1162.10 (14)N2—C7—C12—C11176.8 (2)
C7—N2—C6—N1177.11 (19)C10—C11—C12—C70.0 (3)
C7—N2—C6—S24.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S2i0.85 (3)2.74 (3)3.5625 (16)163 (2)
N2—H02···O0.85 (3)1.89 (3)2.624 (2)144 (2)
C9—H9···S1ii0.952.893.704 (2)144
C2—H2···S2i0.952.763.3193 (18)119
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9BrN2OS2
Mr341.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.1483 (6), 4.4263 (2), 22.671 (1)
β (°) 90.412 (5)
V3)1319.4 (1)
Z4
Radiation typeCu Kα
µ (mm1)7.12
Crystal size (mm)0.15 × 0.05 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.558, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20285, 2712, 2438
Rint0.040
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.06
No. of reflections2712
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S2i0.85 (3)2.74 (3)3.5625 (16)163 (2)
N2—H02···O0.85 (3)1.89 (3)2.624 (2)144 (2)
C9—H9···S1ii0.952.893.704 (2)144.0
C2—H2···S2i0.952.763.3193 (18)118.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University and the National Engineering & Scientific Commission, Islama­bad, Pakistan, for the allocation of research and analytical laboratory facilities.

References

First citationAydemir, N. & Bilaloglu, R. (2003). Mutat. Res. 537, 43–51.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525.  Web of Science CrossRef CAS Google Scholar
First citationJones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSu, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2568-o2569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds