metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1252-m1253

1,2:5,6-Di-O-iso­propyl­­idene-α-D-3-gluco­furanosyl (Rp)-2-(di­phenyl­phosphino)ferrocene-1-carboxyl­ate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague; Hlavova 2030, 12840 Prague 2, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz

(Received 8 September 2009; accepted 24 September 2009; online 30 September 2009)

The title compound, [Fe(C5H5)(C30H32O7P)], which is an inter­mediate in the synthesis of (Rp)-2-(diphenyl­phos­phino)ferrocene-1-carboxylic acid, crystallizes in the common chiral space group P212121. In general, the mol­ecular geometry is very similar to that of the corresponding 2,1′-bis­(diphenyl­phosphino) congener. The ferrocene unit assumes a regular geometry with the proximal bulky substituents efficiently avoiding mutual spatial contacts. In the crystal, the mol­ecules participate in weak intra- and inter­molecular C—H⋯O inter­actions.

Related literature

The title compound was prepared according to Breit & Breuninger (2005a[Breit, B. & Breuninger, D. (2005a). Synthesis, pp. 2782-2786.]). For a related structure, see: Lamač et al. (2009[Lamač, M., Císařová, I. & Štěpnička, P. (2009). New J. Chem. 33, 1549-1562.]). For selected references concerning the use of enantio­pure 2-(diphenyl­phosphino)ferrocene-1-carboxylic acids, see: Longmire et al. (2000[Longmire, J. M., Wang, B. & Zhang, X. (2000). Tetrahedron Lett. 41, 5435-5439.], 2002[Longmire, J. M., Wang, B. & Zhang, X. (2002). J. Am. Chem. Soc. 124, 13400-13401.]); You et al. (2000[You, S.-L., Hou, X.-L., Dai, L.-X., Cao, B.-X. & Sun, J. (2000). Chem. Commun. pp. 1933-1934.], 2001[You, S.-L., Hou, X.-L., Dai, L.-X. & Zhu, X.-Z. (2001). Org. Lett. 3, 149-151.]); Štěpnička (2002[Štěpnička, P. (2002). New J. Chem. 26, 567-575.]); Breit & Breuninger (2004[Breit, B. & Breuninger, D. (2004). J. Am. Chem. Soc. 126, 10244-10245.], 2005b[Breit, B. & Breuninger, D. (2005b). Synthesis, pp. 147-157.],c[Breit, B. & Breuninger, D. (2005c). Eur. J. Org. Chem. pp. 3916-3929.]); Lamač et al. (2007[Lamač, M., Tauchman, J., Císařová, I. & Štěpnička, P. (2007). Organometallics, 26, 5042-5049.]); Bianchini et al. (2008[Bianchini, C., Meli, A., Oberhauser, W., Segarra, A. M., Passaglia, E., Lamač, M. & Štěpnička, P. (2008). Eur. J. Inorg. Chem. pp. 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C30H32O7P)]

  • Mr = 656.47

  • Orthorhombic, P 21 21 21

  • a = 10.3488 (1) Å

  • b = 11.5379 (1) Å

  • c = 26.9830 (3) Å

  • V = 3221.86 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 68616 measured reflections

  • 7369 independent reflections

  • 6632 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.07

  • 7369 reflections

  • 401 parameters

  • H-atom parameters constrained

  • Δρmax = 2.00 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3230 Friedel pairs

  • Flack parameter: −0.012 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O34 0.93 2.50 3.357 (4) 153
C9—H9⋯O1i 0.93 2.54 3.314 (4) 140
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

1,2:5,6-Di-O-isopropylidene-α-D-3-glucofuranosyl 2-(diphenylphosphino)ferrocene-1-carboxylates are useful intermediates in the preparation of optically pure, planar-only chiral 2-(diphenylphosphino)ferrocene-1-carboxylic acids, which already proved to be valuable organometallic synthetic building blocks and chiral auxilliaries (selected references: Longmire et al., 2000 and 2002; You et al., 2000 and 2001; Štěpnička, 2002; Breit & Breuninger, 2004 and 2005b,c; Lamač et al., 2007; and Bianchini et al., 2008).

Structural parameters of the title compound (Fig. 1) are very similar to those reported previously for the related bisphosphine derivative, 1,2:5,6-di-O-isopropylidene-α-D-3-glucofuranosyl (Rp)-2,1'-bis(diphenylphosphino)ferrocene-1-carboxylate (Lamač et al., 2009). Likwise this reference compound, the ferrocene unit in the title compound is only negligibly tilted (dihedral angle of the mean cyclopentadienyl planes being 2.7 (2)°) and displays similar Fe—ring centroid distances (1.640 (1) and 1.650 (12) Å for the cyclopentadienyl rings C(1–5) and C(6–10), respectively). The ferrocene substituents attached in adjacent positions are directed away from each other so as to avoid spatial contacts and to minimize their steric influence on the ferrocene scaffold (cf. the torsion angle C11—C1—C2—P = 0.6 (4)°).

In the solid state, the individual molecules are involved in intra- and intermolecular C—H···O contacts (Table 1).

Related literature top

The title compound was prepared according to Breit & Breuninger (2005a). For a related structure, see: Lamač et al. (2009). For selected references concerning the use of enantiopure 2-(diphenylphosphino)ferrocene-1-carboxylic acids, see: Longmire et al. (2000, 2002); You et al. (2000, 2001); Štěpnička (2002); Breit & Breuninger (2004, 2005b,c); Lamač et al. (2007); Bianchini et al. (2008).

Experimental top

The title compound was prepared by esterification of racemic 2-(diphenylphosphino)ferrocene-1-carboxylic acid with glucose diacetonide (i.e., 1,2:5,6-di-O-isopropylidene-α-D-3-glucofuranose) followed by chromatographic separation of the resulting mixture of diastereoisomers (Breit & Breuninger, 2005a). X-ray quality crystals were grown by crystallization from diethyl ether-pentane at -18 °C.

Refinement top

All H-atoms were included in their calculated positions and refined as riding atoms. The unusually high 'positive' residual electron density can be attributed to lone electron pair at phosphorus (N.B.: The second largest residual electron density peak has only 0.63 e Å-3). Attempted refinement of this largest maximum as a helium atom (two electrons) resulted not only in reasonable geometry (P—X = 1.354 (5) Å; C—P—X angles = 103.5 (2)–124.6 (2) °) but also in a significant decrease in the R-indices (R = 0.0314, wR = 0.0395% for observed diffractions) and extremes on the residual electron denisty map (0.39, -0.33 e Å-3). Besides, the dummy atom is found in a position suitable for the formation of an intramolecular C—H···X contact with H35 (cf. C35···X = 2.14 Å, C35—H35···X = 178 °)

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level.
1,2:5,6-Di-O-isopropylidene-α-D-3-glucofuranosyl (Rp)-2-(diphenylphosphino)ferrocene-1-carboxylate top
Crystal data top
[Fe(C5H5)(C30H32O7P)]F(000) = 1376
Mr = 656.47Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4167 reflections
a = 10.3488 (1) Åθ = 1.0–27.5°
b = 11.5379 (1) ŵ = 0.57 mm1
c = 26.9830 (3) ÅT = 150 K
V = 3221.86 (6) Å3Prism, orange
Z = 40.30 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
6632 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 1.5°
Detector resolution: 9.091 pixels mm-1h = 1313
ω and π scans to fill the Ewald spherek = 1414
68616 measured reflectionsl = 3434
7369 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0602P)2 + 2.0459P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7369 reflectionsΔρmax = 2.00 e Å3
401 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack (1983), 3230 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (16)
Crystal data top
[Fe(C5H5)(C30H32O7P)]V = 3221.86 (6) Å3
Mr = 656.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.3488 (1) ŵ = 0.57 mm1
b = 11.5379 (1) ÅT = 150 K
c = 26.9830 (3) Å0.30 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
6632 reflections with I > 2σ(I)
68616 measured reflectionsRint = 0.053
7369 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112Δρmax = 2.00 e Å3
S = 1.07Δρmin = 0.41 e Å3
7369 reflectionsAbsolute structure: Flack (1983), 3230 Friedel pairs
401 parametersAbsolute structure parameter: 0.012 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.75646 (3)0.73651 (3)0.085623 (12)0.02205 (9)
P0.67684 (7)0.93927 (6)0.17071 (3)0.02765 (15)
O10.5336 (2)0.9165 (2)0.00514 (7)0.0406 (5)
O20.48826 (16)0.95039 (16)0.08521 (7)0.0250 (4)
C10.7010 (3)0.8961 (2)0.06389 (10)0.0221 (5)
C20.7578 (3)0.9010 (2)0.11293 (9)0.0224 (5)
C30.8872 (3)0.8588 (2)0.10792 (11)0.0262 (6)
H30.94680.85170.13360.031*
C40.9102 (3)0.8294 (2)0.05762 (10)0.0260 (6)
H40.98690.80000.04480.031*
C50.7963 (3)0.8527 (2)0.03036 (11)0.0264 (6)
H50.78540.84160.00350.032*
C60.5950 (3)0.6355 (2)0.09204 (12)0.0332 (6)
H60.51020.66000.08730.040*
C70.6644 (3)0.6387 (2)0.13739 (11)0.0353 (7)
H70.63270.66480.16760.042*
C80.7908 (3)0.5949 (3)0.12855 (12)0.0364 (7)
H80.85660.58780.15180.044*
C90.7981 (3)0.5639 (2)0.07764 (12)0.0325 (6)
H90.86980.53270.06170.039*
C100.6769 (3)0.5888 (2)0.05542 (12)0.0337 (6)
H100.65520.57640.02240.040*
C110.5682 (3)0.9205 (2)0.04768 (10)0.0242 (5)
C120.6543 (3)1.0958 (2)0.16384 (10)0.0286 (6)
C130.5657 (3)1.1494 (3)0.19509 (13)0.0374 (7)
H130.52081.10570.21840.045*
C140.5441 (4)1.2664 (3)0.19166 (16)0.0527 (9)
H140.48541.30130.21310.063*
C150.6065 (4)1.3323 (3)0.15764 (19)0.0614 (12)
H150.59061.41150.15570.074*
C160.6950 (4)1.2801 (3)0.12553 (17)0.0568 (10)
H160.73781.32450.10190.068*
C170.7188 (3)1.1630 (3)0.12882 (13)0.0428 (8)
H170.77831.12860.10760.051*
C180.8108 (3)0.9280 (2)0.21501 (10)0.0312 (6)
C190.9024 (3)1.0140 (3)0.22259 (11)0.0352 (7)
H190.90131.08040.20300.042*
C200.9958 (3)1.0016 (3)0.25926 (12)0.0421 (8)
H201.05631.06000.26430.050*
C210.9992 (3)0.9027 (3)0.28826 (12)0.0427 (8)
H211.06230.89450.31250.051*
C220.9091 (4)0.8164 (3)0.28114 (12)0.0429 (8)
H220.91150.74980.30050.051*
C230.8147 (3)0.8290 (3)0.24498 (11)0.0372 (7)
H230.75340.77090.24060.045*
O310.2736 (2)1.05237 (18)0.14377 (7)0.0370 (5)
O320.1519 (3)1.1833 (2)0.09835 (9)0.0525 (7)
O330.2334 (2)1.11358 (17)0.02688 (7)0.0357 (5)
O340.3015 (2)0.74486 (18)0.11693 (7)0.0348 (5)
O350.14038 (19)0.7207 (2)0.17217 (8)0.0374 (5)
C310.2789 (3)1.1452 (3)0.11065 (12)0.0373 (7)
H310.33121.20880.12400.045*
C320.3346 (3)1.1002 (2)0.06165 (11)0.0293 (6)
H320.41401.14030.05180.035*
C330.3552 (2)0.9699 (2)0.07100 (10)0.0260 (6)
H330.33070.92310.04220.031*
C340.2681 (3)0.9470 (3)0.11491 (10)0.0299 (6)
H340.17950.93560.10300.036*
C350.3053 (3)0.8459 (3)0.14770 (11)0.0319 (6)
H350.39200.85710.16150.038*
C360.2076 (3)0.8218 (3)0.18907 (12)0.0401 (7)
H36A0.25100.80710.22030.048*
H36B0.14870.88650.19320.048*
C370.1424 (3)1.1947 (3)0.04633 (12)0.0348 (7)
C380.1743 (4)1.3153 (3)0.02899 (17)0.0534 (9)
H38A0.11401.36930.04310.080*
H38B0.16921.31850.00650.080*
H38C0.26031.33510.03940.080*
C390.0093 (3)1.1574 (4)0.02956 (19)0.0577 (10)
H39A0.01241.08480.04480.087*
H39B0.00871.14860.00580.087*
H39C0.05291.21500.03900.087*
C400.2314 (3)0.6572 (3)0.14332 (10)0.0319 (6)
C410.3214 (3)0.5871 (3)0.17559 (12)0.0430 (8)
H41A0.36760.63810.19740.065*
H41B0.38170.54600.15510.065*
H41C0.27220.53280.19480.065*
C420.1585 (4)0.5848 (3)0.10663 (13)0.0467 (8)
H42A0.11340.52410.12370.070*
H42B0.21800.55130.08340.070*
H42C0.09750.63250.08930.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02177 (17)0.02121 (16)0.02317 (17)0.00037 (15)0.00262 (15)0.00003 (13)
P0.0337 (4)0.0239 (3)0.0253 (3)0.0028 (3)0.0028 (3)0.0012 (3)
O10.0324 (11)0.0661 (16)0.0233 (10)0.0081 (11)0.0023 (8)0.0013 (10)
O20.0197 (8)0.0311 (9)0.0241 (9)0.0034 (7)0.0025 (7)0.0028 (8)
C10.0224 (12)0.0207 (11)0.0232 (12)0.0016 (9)0.0020 (10)0.0002 (10)
C20.0220 (12)0.0191 (10)0.0261 (11)0.0010 (11)0.0001 (12)0.0003 (9)
C30.0209 (13)0.0259 (13)0.0319 (14)0.0008 (10)0.0036 (11)0.0005 (11)
C40.0198 (12)0.0262 (14)0.0320 (14)0.0001 (10)0.0077 (11)0.0037 (11)
C50.0253 (13)0.0272 (13)0.0267 (13)0.0005 (10)0.0028 (10)0.0063 (11)
C60.0252 (13)0.0252 (13)0.0491 (18)0.0047 (10)0.0067 (13)0.0001 (13)
C70.0468 (18)0.0262 (14)0.0330 (15)0.0044 (13)0.0190 (14)0.0017 (12)
C80.0441 (18)0.0248 (13)0.0401 (17)0.0016 (12)0.0016 (13)0.0099 (12)
C90.0349 (14)0.0191 (12)0.0436 (17)0.0031 (10)0.0117 (12)0.0012 (12)
C100.0367 (16)0.0275 (14)0.0369 (16)0.0055 (12)0.0041 (13)0.0066 (12)
C110.0246 (13)0.0237 (13)0.0243 (13)0.0003 (10)0.0006 (10)0.0012 (10)
C120.0291 (14)0.0256 (12)0.0310 (14)0.0000 (11)0.0072 (11)0.0032 (11)
C130.0324 (16)0.0362 (16)0.0437 (18)0.0045 (13)0.0024 (13)0.0103 (14)
C140.0422 (18)0.0366 (18)0.079 (3)0.0080 (16)0.0027 (17)0.0191 (19)
C150.056 (2)0.0242 (16)0.104 (4)0.0048 (16)0.023 (2)0.0059 (19)
C160.068 (2)0.0303 (17)0.072 (3)0.0042 (17)0.002 (2)0.0071 (17)
C170.055 (2)0.0261 (14)0.0474 (19)0.0005 (14)0.0070 (15)0.0008 (13)
C180.0401 (15)0.0304 (14)0.0231 (13)0.0070 (12)0.0024 (11)0.0044 (11)
C190.0413 (17)0.0359 (15)0.0284 (15)0.0032 (13)0.0054 (13)0.0015 (12)
C200.0406 (17)0.048 (2)0.0373 (18)0.0037 (15)0.0029 (15)0.0089 (15)
C210.0441 (19)0.055 (2)0.0285 (15)0.0132 (16)0.0079 (14)0.0078 (14)
C220.058 (2)0.0410 (18)0.0298 (16)0.0161 (16)0.0012 (15)0.0017 (13)
C230.0480 (18)0.0322 (15)0.0315 (15)0.0067 (14)0.0010 (14)0.0008 (12)
O310.0423 (12)0.0388 (11)0.0300 (10)0.0069 (10)0.0007 (9)0.0086 (9)
O320.0508 (14)0.0652 (17)0.0415 (13)0.0302 (13)0.0041 (11)0.0036 (11)
O330.0382 (12)0.0353 (10)0.0337 (10)0.0132 (10)0.0098 (10)0.0054 (8)
O340.0381 (10)0.0327 (11)0.0335 (10)0.0007 (9)0.0119 (8)0.0062 (9)
O350.0267 (10)0.0502 (13)0.0352 (11)0.0015 (9)0.0087 (8)0.0063 (10)
C310.0432 (18)0.0335 (15)0.0353 (15)0.0086 (13)0.0087 (13)0.0072 (12)
C320.0261 (14)0.0269 (13)0.0349 (14)0.0052 (11)0.0029 (12)0.0012 (11)
C330.0212 (12)0.0279 (13)0.0289 (13)0.0031 (10)0.0031 (10)0.0016 (10)
C340.0240 (13)0.0350 (14)0.0308 (13)0.0001 (12)0.0013 (11)0.0029 (11)
C350.0249 (13)0.0397 (16)0.0310 (15)0.0010 (12)0.0031 (11)0.0030 (12)
C360.0383 (17)0.0512 (19)0.0307 (15)0.0003 (14)0.0081 (12)0.0011 (14)
C370.0296 (15)0.0320 (15)0.0427 (17)0.0098 (12)0.0025 (13)0.0013 (13)
C380.048 (2)0.0327 (16)0.079 (3)0.0075 (16)0.007 (2)0.0024 (17)
C390.0371 (19)0.050 (2)0.086 (3)0.0038 (16)0.0101 (19)0.003 (2)
C400.0290 (15)0.0387 (14)0.0280 (13)0.0009 (12)0.0043 (12)0.0079 (11)
C410.0363 (16)0.0530 (19)0.0398 (17)0.0037 (15)0.0064 (14)0.0161 (15)
C420.051 (2)0.048 (2)0.0415 (18)0.0077 (17)0.0051 (16)0.0030 (15)
Geometric parameters (Å, º) top
Fe—C12.016 (3)C19—C201.391 (4)
Fe—C72.033 (3)C19—H190.9300
Fe—C82.034 (3)C20—C211.383 (5)
Fe—C22.035 (2)C20—H200.9300
Fe—C62.045 (3)C21—C221.378 (5)
Fe—C32.045 (3)C21—H210.9300
Fe—C52.047 (3)C22—C231.388 (5)
Fe—C92.050 (3)C22—H220.9300
Fe—C102.061 (3)C23—H230.9300
Fe—C42.062 (3)O31—C311.396 (4)
P—C21.824 (3)O31—C341.445 (3)
P—C121.831 (3)O32—C371.413 (4)
P—C181.835 (3)O32—C311.426 (4)
O1—C111.203 (3)O33—C321.415 (3)
O2—C111.352 (3)O33—C371.428 (4)
O2—C331.447 (3)O34—C351.432 (4)
C1—C51.429 (4)O34—C401.434 (3)
C1—C21.449 (4)O35—C401.425 (4)
C1—C111.469 (4)O35—C361.432 (4)
C2—C31.432 (4)C31—C321.533 (4)
C3—C41.419 (4)C31—H310.9800
C3—H30.9300C32—C331.540 (4)
C4—C51.415 (4)C32—H320.9800
C4—H40.9300C33—C341.512 (4)
C5—H50.9300C33—H330.9800
C6—C101.409 (4)C34—C351.514 (4)
C6—C71.419 (5)C34—H340.9800
C6—H60.9300C35—C361.531 (4)
C7—C81.423 (5)C35—H350.9800
C7—H70.9300C36—H36A0.9700
C8—C91.422 (5)C36—H36B0.9700
C8—H80.9300C37—C381.505 (5)
C9—C101.420 (4)C37—C391.512 (5)
C9—H90.9300C38—H38A0.9600
C10—H100.9300C38—H38B0.9600
C12—C131.391 (4)C38—H38C0.9600
C12—C171.393 (4)C39—H39A0.9600
C13—C141.372 (5)C39—H39B0.9600
C13—H130.9300C39—H39C0.9600
C14—C151.356 (6)C40—C421.499 (4)
C14—H140.9300C40—C411.510 (4)
C15—C161.397 (6)C41—H41A0.9600
C15—H150.9300C41—H41B0.9600
C16—C171.375 (5)C41—H41C0.9600
C16—H160.9300C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—C191.387 (4)C42—H42C0.9600
C18—C231.401 (4)
C1—Fe—C7124.99 (12)C13—C12—P117.5 (2)
C1—Fe—C8161.64 (12)C17—C12—P123.8 (2)
C7—Fe—C840.94 (13)C14—C13—C12120.3 (3)
C1—Fe—C241.92 (10)C14—C13—H13119.9
C7—Fe—C2105.79 (11)C12—C13—H13119.9
C8—Fe—C2122.79 (12)C15—C14—C13121.3 (4)
C1—Fe—C6108.19 (11)C15—C14—H14119.3
C7—Fe—C640.73 (14)C13—C14—H14119.3
C8—Fe—C668.69 (13)C14—C15—C16119.4 (3)
C2—Fe—C6120.40 (11)C14—C15—H15120.3
C1—Fe—C369.16 (11)C16—C15—H15120.3
C7—Fe—C3119.41 (12)C17—C16—C15120.0 (4)
C8—Fe—C3105.73 (13)C17—C16—H16120.0
C2—Fe—C341.07 (11)C15—C16—H16120.0
C6—Fe—C3155.36 (12)C16—C17—C12120.3 (3)
C1—Fe—C541.19 (10)C16—C17—H17119.9
C7—Fe—C5163.43 (12)C12—C17—H17119.8
C8—Fe—C5154.91 (12)C19—C18—C23118.6 (3)
C2—Fe—C569.64 (10)C19—C18—P124.2 (2)
C6—Fe—C5126.84 (12)C23—C18—P117.1 (2)
C3—Fe—C568.24 (11)C18—C19—C20120.4 (3)
C1—Fe—C9156.50 (12)C18—C19—H19119.8
C7—Fe—C968.36 (12)C20—C19—H19119.8
C8—Fe—C940.74 (13)C21—C20—C19120.4 (3)
C2—Fe—C9160.49 (12)C21—C20—H20119.8
C6—Fe—C968.10 (11)C19—C20—H20119.8
C3—Fe—C9124.19 (12)C22—C21—C20120.0 (3)
C5—Fe—C9121.16 (12)C22—C21—H21120.0
C1—Fe—C10121.76 (12)C20—C21—H21120.0
C7—Fe—C1067.98 (12)C21—C22—C23119.9 (3)
C8—Fe—C1068.32 (14)C21—C22—H22120.0
C2—Fe—C10156.46 (12)C23—C22—H22120.0
C6—Fe—C1040.14 (12)C22—C23—C18120.7 (3)
C3—Fe—C10162.01 (12)C22—C23—H23119.6
C5—Fe—C10109.51 (12)C18—C23—H23119.6
C9—Fe—C1040.43 (12)C31—O31—C34107.6 (2)
C1—Fe—C468.81 (11)C37—O32—C31108.9 (2)
C7—Fe—C4154.44 (13)C32—O33—C37108.4 (2)
C8—Fe—C4119.45 (12)C35—O34—C40107.5 (2)
C2—Fe—C469.07 (11)C40—O35—C36105.8 (2)
C6—Fe—C4163.34 (12)O31—C31—O32110.4 (3)
C3—Fe—C440.41 (11)O31—C31—C32107.9 (2)
C5—Fe—C440.29 (11)O32—C31—C32104.5 (2)
C9—Fe—C4107.72 (11)O31—C31—H31111.2
C10—Fe—C4126.40 (12)O32—C31—H31111.2
C2—P—C12102.19 (12)C32—C31—H31111.2
C2—P—C18101.10 (13)O33—C32—C31104.9 (2)
C12—P—C18103.40 (13)O33—C32—C33108.5 (2)
C11—O2—C33115.1 (2)C31—C32—C33103.9 (2)
C5—C1—C2108.1 (2)O33—C32—H32112.9
C5—C1—C11121.6 (2)C31—C32—H32112.9
C2—C1—C11130.1 (2)C33—C32—H32112.9
C5—C1—Fe70.57 (15)O2—C33—C34109.4 (2)
C2—C1—Fe69.77 (14)O2—C33—C32109.1 (2)
C11—C1—Fe121.91 (19)C34—C33—C32102.5 (2)
C3—C2—C1106.3 (2)O2—C33—H33111.8
C3—C2—P126.4 (2)C34—C33—H33111.8
C1—C2—P127.1 (2)C32—C33—H33111.8
C3—C2—Fe69.83 (14)O31—C34—C33104.6 (2)
C1—C2—Fe68.31 (14)O31—C34—C35108.9 (2)
P—C2—Fe122.15 (13)C33—C34—C35116.2 (2)
C4—C3—C2109.2 (2)O31—C34—H34109.0
C4—C3—Fe70.44 (16)C33—C34—H34109.0
C2—C3—Fe69.10 (14)C35—C34—H34109.0
C4—C3—H3125.4O34—C35—C34106.3 (2)
C2—C3—H3125.4O34—C35—C36104.9 (2)
Fe—C3—H3126.6C34—C35—C36113.4 (3)
C5—C4—C3108.2 (2)O34—C35—H35110.6
C5—C4—Fe69.26 (15)C34—C35—H35110.6
C3—C4—Fe69.15 (16)C36—C35—H35110.6
C5—C4—H4125.9O35—C36—C35103.7 (2)
C3—C4—H4125.9O35—C36—H36A111.0
Fe—C4—H4127.3C35—C36—H36A111.0
C4—C5—C1108.2 (2)O35—C36—H36B111.0
C4—C5—Fe70.45 (15)C35—C36—H36B111.0
C1—C5—Fe68.24 (15)H36A—C36—H36B109.0
C4—C5—H5125.9O32—C37—O33105.0 (2)
C1—C5—H5125.9O32—C37—C38112.3 (3)
Fe—C5—H5127.0O33—C37—C38110.3 (3)
C10—C6—C7108.1 (3)O32—C37—C39109.5 (3)
C10—C6—Fe70.55 (17)O33—C37—C39107.7 (3)
C7—C6—Fe69.20 (16)C38—C37—C39111.8 (3)
C10—C6—H6126.0C37—C38—H38A109.5
C7—C6—H6126.0C37—C38—H38B109.5
Fe—C6—H6125.9H38A—C38—H38B109.5
C6—C7—C8108.2 (3)C37—C38—H38C109.5
C6—C7—Fe70.07 (16)H38A—C38—H38C109.5
C8—C7—Fe69.57 (17)H38B—C38—H38C109.5
C6—C7—H7125.9C37—C39—H39A109.5
C8—C7—H7125.9C37—C39—H39B109.5
Fe—C7—H7126.0H39A—C39—H39B109.5
C9—C8—C7107.5 (3)C37—C39—H39C109.5
C9—C8—Fe70.20 (17)H39A—C39—H39C109.5
C7—C8—Fe69.49 (17)H39B—C39—H39C109.5
C9—C8—H8126.2O35—C40—O34104.1 (2)
C7—C8—H8126.2O35—C40—C42108.4 (3)
Fe—C8—H8125.6O34—C40—C42108.6 (2)
C10—C9—C8108.0 (3)O35—C40—C41111.6 (2)
C10—C9—Fe70.23 (16)O34—C40—C41110.6 (2)
C8—C9—Fe69.06 (16)C42—C40—C41113.1 (3)
C10—C9—H9126.0C40—C41—H41A109.5
C8—C9—H9126.0C40—C41—H41B109.5
Fe—C9—H9126.3H41A—C41—H41B109.5
C6—C10—C9108.2 (3)C40—C41—H41C109.5
C6—C10—Fe69.31 (16)H41A—C41—H41C109.5
C9—C10—Fe69.35 (17)H41B—C41—H41C109.5
C6—C10—H10125.9C40—C42—H42A109.5
C9—C10—H10125.9C40—C42—H42B109.5
Fe—C10—H10127.0H42A—C42—H42B109.5
O1—C11—O2122.8 (2)C40—C42—H42C109.5
O1—C11—C1123.7 (3)H42A—C42—H42C109.5
O2—C11—C1113.5 (2)H42B—C42—H42C109.5
C13—C12—C17118.7 (3)
C5—C1—C2—C30.6 (3)C21—C22—C23—C180.8 (5)
C11—C1—C2—C3175.0 (3)C19—C18—C23—C220.7 (4)
C5—C1—C2—P175.07 (19)P—C18—C23—C22176.8 (2)
C11—C1—C2—P0.6 (4)C34—O31—C31—O3289.5 (3)
C12—P—C2—C3114.0 (2)C34—O31—C31—C3224.1 (3)
C18—P—C2—C37.5 (3)C37—O32—C31—O31131.8 (3)
C12—P—C2—C172.6 (2)C37—O32—C31—C3216.0 (3)
C18—P—C2—C1179.1 (2)C37—O33—C32—C3118.8 (3)
C1—C2—C3—C40.3 (3)C37—O33—C32—C33129.4 (2)
P—C2—C3—C4174.88 (19)O31—C31—C32—O33115.8 (3)
C2—C3—C4—C50.0 (3)O32—C31—C32—O331.8 (3)
C3—C4—C5—C10.4 (3)O31—C31—C32—C331.9 (3)
C2—C1—C5—C40.6 (3)O32—C31—C32—C33115.7 (3)
C11—C1—C5—C4175.5 (2)C11—O2—C33—C34153.8 (2)
C10—C6—C7—C80.7 (3)C11—O2—C33—C3294.9 (3)
C6—C7—C8—C90.5 (3)O33—C32—C33—O2152.3 (2)
C7—C8—C9—C100.1 (3)C31—C32—C33—O296.4 (3)
C7—C6—C10—C90.7 (3)O33—C32—C33—C3491.8 (3)
C8—C9—C10—C60.4 (3)C31—C32—C33—C3419.5 (3)
C33—O2—C11—O13.9 (4)C31—O31—C34—C3337.1 (3)
C33—O2—C11—C1177.2 (2)C31—O31—C34—C35161.9 (2)
C5—C1—C11—O17.2 (4)O2—C33—C34—O3181.6 (3)
C2—C1—C11—O1177.7 (3)C32—C33—C34—O3134.1 (3)
C5—C1—C11—O2174.0 (2)O2—C33—C34—C3538.4 (3)
C2—C1—C11—O21.1 (4)C32—C33—C34—C35154.1 (2)
C2—P—C12—C13163.4 (2)C40—O34—C35—C34132.7 (2)
C18—P—C12—C1391.8 (2)C40—O34—C35—C3612.2 (3)
C2—P—C12—C1715.4 (3)O31—C34—C35—O34178.5 (2)
C18—P—C12—C1789.3 (3)C33—C34—C35—O3460.8 (3)
C17—C12—C13—C140.8 (5)O31—C34—C35—C3666.7 (3)
P—C12—C13—C14179.8 (3)C33—C34—C35—C36175.6 (3)
C12—C13—C14—C150.9 (5)C40—O35—C36—C3530.5 (3)
C13—C14—C15—C160.2 (6)O34—C35—C36—O3511.1 (3)
C14—C15—C16—C170.5 (6)C34—C35—C36—O35104.6 (3)
C15—C16—C17—C120.5 (6)C31—O32—C37—O3327.8 (3)
C13—C12—C17—C160.2 (5)C31—O32—C37—C3892.1 (3)
P—C12—C17—C16179.0 (3)C31—O32—C37—C39143.1 (3)
C2—P—C18—C1981.3 (3)C32—O33—C37—O3229.0 (3)
C12—P—C18—C1924.2 (3)C32—O33—C37—C3892.2 (3)
C2—P—C18—C23102.9 (2)C32—O33—C37—C39145.6 (3)
C12—P—C18—C23151.6 (2)C36—O35—C40—O3438.8 (3)
C23—C18—C19—C200.0 (4)C36—O35—C40—C42154.2 (3)
P—C18—C19—C20175.7 (2)C36—O35—C40—C4180.5 (3)
C18—C19—C20—C210.7 (5)C35—O34—C40—O3531.3 (3)
C19—C20—C21—C220.5 (5)C35—O34—C40—C42146.6 (3)
C20—C21—C22—C230.2 (5)C35—O34—C40—C4188.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O340.932.503.357 (4)153
C9—H9···O1i0.932.543.314 (4)140
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C30H32O7P)]
Mr656.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)10.3488 (1), 11.5379 (1), 26.9830 (3)
V3)3221.86 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
68616, 7369, 6632
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.07
No. of reflections7369
No. of parameters401
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.00, 0.41
Absolute structureFlack (1983), 3230 Friedel pairs
Absolute structure parameter0.012 (16)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O340.932.503.357 (4)153
C9—H9···O1i0.932.543.314 (4)140
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

This work is a part of the long-term research projects supported by the Ministry of Education, Youth and Sports of the Czech Republic (project Nos. LC06070 and MSM0021620857).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBianchini, C., Meli, A., Oberhauser, W., Segarra, A. M., Passaglia, E., Lamač, M. & Štěpnička, P. (2008). Eur. J. Inorg. Chem. pp. 441–452.  Web of Science CSD CrossRef Google Scholar
First citationBreit, B. & Breuninger, D. (2004). J. Am. Chem. Soc. 126, 10244–10245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBreit, B. & Breuninger, D. (2005a). Synthesis, pp. 2782–2786.  Web of Science CrossRef Google Scholar
First citationBreit, B. & Breuninger, D. (2005b). Synthesis, pp. 147–157.  Web of Science CrossRef Google Scholar
First citationBreit, B. & Breuninger, D. (2005c). Eur. J. Org. Chem. pp. 3916–3929.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLamač, M., Císařová, I. & Štěpnička, P. (2009). New J. Chem. 33, 1549–1562.  Google Scholar
First citationLamač, M., Tauchman, J., Císařová, I. & Štěpnička, P. (2007). Organometallics, 26, 5042–5049.  Google Scholar
First citationLongmire, J. M., Wang, B. & Zhang, X. (2000). Tetrahedron Lett. 41, 5435–5439.  Web of Science CrossRef CAS Google Scholar
First citationLongmire, J. M., Wang, B. & Zhang, X. (2002). J. Am. Chem. Soc. 124, 13400–13401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. (2002). New J. Chem. 26, 567–575.  Google Scholar
First citationYou, S.-L., Hou, X.-L., Dai, L.-X., Cao, B.-X. & Sun, J. (2000). Chem. Commun. pp. 1933–1934.  Web of Science CrossRef Google Scholar
First citationYou, S.-L., Hou, X.-L., Dai, L.-X. & Zhu, X.-Z. (2001). Org. Lett. 3, 149–151.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1252-m1253
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds