organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[3-(4-Fluoro­phen­yl)pyrido[2,3-b]pyrazin-2-yl]-2-pyrid­yl}iso­propyl­amine

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 10 September 2009; accepted 21 September 2009; online 26 September 2009)

In the crystal structure of the title compound, C21H18FN5, the pyridopyrazine ring system forms dihedral angles of 33.27 (7) and 48.69 (9)° with the 4-fluoro­phenyl and pyridine ring, respectively. The dihedral angle of the 4-fluoro­phenyl and pyridine rings is 57.45 (8)°. The crystal packing is characterized by an inter­molecular N—H⋯N hydrogen bond.

Related literature

For the preparation of pyridopyrazines under microwave conditions, see: Zhao et al. (2004[Zhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y. & Lindsley, C. W. (2004). Tetrahedron Lett. 45, 4873-4876.])

[Scheme 1]

Experimental

Crystal data
  • C21H18FN5

  • Mr = 359.40

  • Monoclinic, P 21 /c

  • a = 12.042 (1) Å

  • b = 7.6586 (2) Å

  • c = 20.095 (2) Å

  • β = 100.215 (5)°

  • V = 1823.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.743, Tmax = 0.998

  • 3578 measured reflections

  • 3468 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.05

  • 3468 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N6i 0.91 2.32 3.166 (2) 154
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound, {4-[3-(4-fluorophenyl)-pyrido[2,3-b]pyrazin-2-yl]-pyridin-2-yl}-isopropylamine (I), was prepared in the course of our studies on pyridin-4-yl-substituted pyridopyrazines as p38 mitogen-activated protein (MAP) kinase inhibitors.

The microwave-assisted reaction of 1-(4-fluorophenyl)-2-(2-(isopropylamino)-pyridin-4-yl)ethane-1,2-dione and 2,3-diaminopyridine yields two regioisomers, {4-[3-(4-fluorophenyl)-pyrido[2,3-b]pyrazin-2-yl]-pyridin-2-yl}-isopropylamine (I) and {4-[2-(4-fluorophenyl)-pyrido[3,2-b]pyrazin-3-yl]-pyridin-2-yl}-isopropylamine (II). The isomers were separated by flash-chromatography. To identify the two regioisomers X-ray crystallography was used. Herein we present the X-ray crystallographic data of the first eluted isomer I.

As might be expected the 4-fluorophenyl, the pyridine ring as well as the pyridopyrazine ring are planar (Figure 1). The pyridopyrazine ring encloses dihedral angles of 33.27 (7)° and 48.69 (9)° to the 4-fluorophenyl ring and the pyridine ring, respectively. The dihedral angle of the 4-fluorophenyl ring and the pyridine ring measures to 57.45 (8)° to the pyridine ring. The crystal packing is characterized by an intermolecular hydrogen bond N17–H17···N6 2.32 Å.

Related literature top

For the preparation of pyridopyrazines under microwave conditions, see: Zhao et al. (2004)

Experimental top

1-(4-Fluorophenyl)-2-(2-(isopropylamino)pyridin-4-yl)ethane-1,2-dione (115 mg, 0.4 mmol), 2,3-diaminopyridine (44 mg, 0.4 mmol), and methanol/glacial acetic acid (3 ml, 9:1, v:v) were combined in a reaction vial. The reaction vessel was heated in a microwave reactor for 5 min at 433 K (initial power 250 W). Then a stream of compressed air cooled the reaction vessel to r.t. The solvent was removed under reduced pressure and the residue was purified by flash-chromatography (silica gel, light petroleum /ethyl acetate 1:1 to 1:4) to yield 46 mg (33%) of I as a yellow solid. Suitable crystals of compound I for X-ray diffraction were obtained from a solution in n-hexane - diethyl ether (2:1) by slow evaporation of the solvent at 298 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atom attached to N17 was located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
N-{4-[3-(4-Fluorophenyl)pyrido[2,3-b]pyrazin-2-yl]- 2-pyridyl}isopropylamine top
Crystal data top
C21H18FN5F(000) = 752
Mr = 359.40Dx = 1.309 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.042 (1) Åθ = 60–69°
b = 7.6586 (2) ŵ = 0.72 mm1
c = 20.095 (2) ÅT = 193 K
β = 100.215 (5)°Plate, yellow
V = 1823.8 (3) Å30.50 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2912 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.063
Graphite monochromatorθmax = 70.2°, θmin = 3.7°
ω/2θ scansh = 1414
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 90
Tmin = 0.743, Tmax = 0.998l = 024
3578 measured reflections3 standard reflections every 60 min
3468 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.065P)2 + 0.5513P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3468 reflectionsΔρmax = 0.29 e Å3
247 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (4)
Crystal data top
C21H18FN5V = 1823.8 (3) Å3
Mr = 359.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.042 (1) ŵ = 0.72 mm1
b = 7.6586 (2) ÅT = 193 K
c = 20.095 (2) Å0.50 × 0.20 × 0.10 mm
β = 100.215 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2912 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.063
Tmin = 0.743, Tmax = 0.9983 standard reflections every 60 min
3578 measured reflections intensity decay: 2%
3468 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3468 reflectionsΔρmin = 0.28 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.34953 (12)0.36820 (19)0.45738 (6)0.0682 (4)
N10.47943 (11)0.38937 (19)0.08886 (7)0.0343 (3)
C20.43429 (13)0.4033 (2)0.14386 (8)0.0292 (3)
C30.50235 (12)0.38498 (19)0.21015 (8)0.0278 (3)
N40.61263 (11)0.36734 (17)0.21777 (7)0.0315 (3)
C50.66035 (13)0.3611 (2)0.16141 (8)0.0319 (4)
N60.77471 (11)0.3488 (2)0.17218 (8)0.0412 (4)
C70.82147 (15)0.3384 (3)0.11753 (10)0.0463 (5)
H70.90140.33150.12370.056*
C80.76109 (16)0.3370 (3)0.05108 (10)0.0508 (5)
H80.79980.32580.01400.061*
C90.64671 (16)0.3516 (3)0.04001 (9)0.0470 (5)
H90.60420.35220.00460.056*
C100.59296 (14)0.3660 (2)0.09677 (8)0.0336 (4)
C110.31151 (12)0.4444 (2)0.13098 (7)0.0287 (3)
C120.23734 (13)0.3532 (2)0.08126 (8)0.0349 (4)
H120.26280.25710.05810.042*
C130.12700 (13)0.4069 (2)0.06713 (8)0.0370 (4)
H130.07720.34420.03360.044*
N140.08393 (10)0.54181 (18)0.09720 (7)0.0345 (3)
C150.15497 (13)0.6273 (2)0.14529 (8)0.0307 (3)
C160.26989 (12)0.5820 (2)0.16339 (8)0.0299 (3)
H160.31810.64560.19750.036*
N170.11431 (11)0.76489 (19)0.17634 (7)0.0382 (4)
H170.15870.81530.21290.046*
C180.00040 (14)0.8299 (2)0.15770 (9)0.0393 (4)
H180.05310.72790.15130.047*
C190.02796 (18)0.9414 (3)0.21535 (11)0.0545 (5)
H19A0.02580.86870.25570.082*
H19B0.10350.99170.20220.082*
H19C0.02761.03560.22520.082*
C200.0150 (2)0.9323 (3)0.09207 (11)0.0610 (6)
H20A0.03071.03880.09890.091*
H20B0.09470.96360.07800.091*
H20C0.00940.86070.05690.091*
C210.45692 (13)0.3816 (2)0.27448 (8)0.0295 (3)
C220.52397 (14)0.4499 (2)0.33258 (8)0.0355 (4)
H220.59530.49940.32960.043*
C230.48813 (17)0.4467 (2)0.39438 (9)0.0439 (4)
H230.53300.49550.43370.053*
C240.38569 (17)0.3708 (3)0.39702 (9)0.0441 (4)
C250.31854 (15)0.2973 (2)0.34194 (9)0.0410 (4)
H250.24910.24330.34600.049*
C260.35451 (14)0.3039 (2)0.28003 (8)0.0342 (4)
H260.30880.25490.24110.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0892 (9)0.0835 (9)0.0395 (6)0.0090 (7)0.0321 (6)0.0019 (6)
N10.0320 (7)0.0395 (8)0.0321 (7)0.0079 (6)0.0075 (5)0.0045 (6)
C20.0298 (8)0.0263 (7)0.0321 (8)0.0022 (6)0.0070 (6)0.0014 (6)
C30.0282 (7)0.0230 (7)0.0322 (8)0.0009 (6)0.0054 (6)0.0008 (6)
N40.0285 (7)0.0311 (7)0.0348 (7)0.0033 (5)0.0053 (5)0.0024 (5)
C50.0292 (8)0.0277 (8)0.0399 (9)0.0037 (6)0.0091 (6)0.0051 (6)
N60.0275 (7)0.0448 (9)0.0524 (9)0.0048 (6)0.0103 (6)0.0048 (7)
C70.0305 (8)0.0486 (11)0.0634 (12)0.0084 (8)0.0181 (8)0.0125 (9)
C80.0460 (10)0.0590 (12)0.0540 (11)0.0162 (9)0.0273 (9)0.0193 (9)
C90.0438 (10)0.0610 (12)0.0395 (9)0.0169 (9)0.0164 (8)0.0154 (9)
C100.0324 (8)0.0325 (8)0.0373 (8)0.0085 (6)0.0101 (6)0.0074 (7)
C110.0279 (7)0.0302 (8)0.0285 (7)0.0022 (6)0.0066 (6)0.0025 (6)
C120.0333 (8)0.0360 (9)0.0363 (8)0.0011 (7)0.0085 (6)0.0077 (7)
C130.0306 (8)0.0409 (9)0.0386 (9)0.0044 (7)0.0037 (7)0.0099 (7)
N140.0259 (6)0.0389 (8)0.0383 (7)0.0003 (5)0.0045 (5)0.0038 (6)
C150.0288 (7)0.0327 (8)0.0311 (7)0.0017 (6)0.0073 (6)0.0008 (6)
C160.0276 (7)0.0307 (8)0.0305 (7)0.0006 (6)0.0026 (6)0.0011 (6)
N170.0308 (7)0.0410 (8)0.0409 (8)0.0088 (6)0.0018 (6)0.0093 (6)
C180.0299 (8)0.0371 (9)0.0503 (10)0.0077 (7)0.0057 (7)0.0037 (8)
C190.0490 (11)0.0553 (12)0.0597 (12)0.0199 (9)0.0104 (9)0.0105 (10)
C200.0668 (14)0.0562 (13)0.0567 (13)0.0236 (11)0.0025 (10)0.0048 (10)
C210.0318 (8)0.0264 (8)0.0306 (8)0.0049 (6)0.0068 (6)0.0033 (6)
C220.0389 (9)0.0327 (8)0.0344 (8)0.0004 (7)0.0051 (7)0.0014 (7)
C230.0570 (11)0.0424 (10)0.0310 (8)0.0020 (8)0.0044 (8)0.0006 (7)
C240.0588 (11)0.0448 (10)0.0323 (9)0.0049 (9)0.0183 (8)0.0058 (7)
C250.0415 (9)0.0400 (9)0.0446 (10)0.0005 (8)0.0163 (7)0.0077 (8)
C260.0351 (8)0.0320 (8)0.0360 (8)0.0019 (7)0.0076 (6)0.0015 (7)
Geometric parameters (Å, º) top
F1—C241.3595 (19)C15—N171.359 (2)
N1—C21.3197 (19)C15—C161.410 (2)
N1—C101.360 (2)C16—H160.9500
C2—C31.442 (2)N17—C181.454 (2)
C2—C111.489 (2)N17—H170.9144
C3—N41.3165 (19)C18—C201.518 (3)
C3—C211.491 (2)C18—C191.523 (2)
N4—C51.359 (2)C18—H181.0000
C5—N61.359 (2)C19—H19A0.9800
C5—C101.405 (2)C19—H19B0.9800
N6—C71.322 (2)C19—H19C0.9800
C7—C81.403 (3)C20—H20A0.9800
C7—H70.9500C20—H20B0.9800
C8—C91.360 (3)C20—H20C0.9800
C8—H80.9500C21—C261.391 (2)
C9—C101.412 (2)C21—C221.398 (2)
C9—H90.9500C22—C231.385 (2)
C11—C161.379 (2)C22—H220.9500
C11—C121.403 (2)C23—C241.373 (3)
C12—C131.372 (2)C23—H230.9500
C12—H120.9500C24—C251.370 (3)
C13—N141.346 (2)C25—C261.389 (2)
C13—H130.9500C25—H250.9500
N14—C151.342 (2)C26—H260.9500
C2—N1—C10117.88 (13)C15—N17—C18123.40 (14)
N1—C2—C3120.98 (14)C15—N17—H17119.3
N1—C2—C11114.55 (13)C18—N17—H17117.2
C3—C2—C11124.44 (13)N17—C18—C20111.07 (15)
N4—C3—C2120.92 (14)N17—C18—C19108.76 (15)
N4—C3—C21114.53 (13)C20—C18—C19111.33 (16)
C2—C3—C21124.54 (13)N17—C18—H18108.5
C3—N4—C5118.27 (13)C20—C18—H18108.5
N4—C5—N6115.86 (14)C19—C18—H18108.5
N4—C5—C10120.63 (14)C18—C19—H19A109.5
N6—C5—C10123.51 (15)C18—C19—H19B109.5
C7—N6—C5116.14 (15)H19A—C19—H19B109.5
N6—C7—C8124.47 (16)C18—C19—H19C109.5
N6—C7—H7117.8H19A—C19—H19C109.5
C8—C7—H7117.8H19B—C19—H19C109.5
C9—C8—C7119.59 (17)C18—C20—H20A109.5
C9—C8—H8120.2C18—C20—H20B109.5
C7—C8—H8120.2H20A—C20—H20B109.5
C8—C9—C10118.05 (17)C18—C20—H20C109.5
C8—C9—H9121.0H20A—C20—H20C109.5
C10—C9—H9121.0H20B—C20—H20C109.5
N1—C10—C5121.04 (14)C26—C21—C22118.82 (15)
N1—C10—C9120.74 (15)C26—C21—C3122.93 (14)
C5—C10—C9118.19 (15)C22—C21—C3118.12 (14)
C16—C11—C12118.58 (14)C23—C22—C21121.09 (16)
C16—C11—C2120.82 (14)C23—C22—H22119.5
C12—C11—C2120.37 (14)C21—C22—H22119.5
C13—C12—C11117.96 (15)C24—C23—C22117.83 (16)
C13—C12—H12121.0C24—C23—H23121.1
C11—C12—H12121.0C22—C23—H23121.1
N14—C13—C12124.99 (15)F1—C24—C25118.57 (17)
N14—C13—H13117.5F1—C24—C23118.20 (17)
C12—C13—H13117.5C25—C24—C23123.23 (16)
C15—N14—C13116.76 (13)C24—C25—C26118.40 (16)
N14—C15—N17118.24 (14)C24—C25—H25120.8
N14—C15—C16122.48 (14)C26—C25—H25120.8
N17—C15—C16119.27 (14)C25—C26—C21120.58 (16)
C11—C16—C15119.22 (14)C25—C26—H26119.7
C11—C16—H16120.4C21—C26—H26119.7
C15—C16—H16120.4
C10—N1—C2—C33.3 (2)C2—C11—C12—C13174.10 (15)
C10—N1—C2—C11174.81 (14)C11—C12—C13—N140.3 (3)
N1—C2—C3—N45.3 (2)C12—C13—N14—C151.1 (3)
C11—C2—C3—N4172.55 (14)C13—N14—C15—N17179.56 (15)
N1—C2—C3—C21173.81 (14)C13—N14—C15—C161.1 (2)
C11—C2—C3—C218.3 (2)C12—C11—C16—C150.5 (2)
C2—C3—N4—C52.1 (2)C2—C11—C16—C15174.11 (14)
C21—C3—N4—C5177.08 (13)N14—C15—C16—C110.4 (2)
C3—N4—C5—N6177.84 (14)N17—C15—C16—C11178.81 (15)
C3—N4—C5—C102.6 (2)N14—C15—N17—C183.3 (2)
N4—C5—N6—C7178.44 (16)C16—C15—N17—C18175.18 (15)
C10—C5—N6—C71.1 (2)C15—N17—C18—C2075.1 (2)
C5—N6—C7—C80.9 (3)C15—N17—C18—C19162.02 (17)
N6—C7—C8—C91.8 (3)N4—C3—C21—C26143.17 (15)
C7—C8—C9—C100.7 (3)C2—C3—C21—C2636.0 (2)
C2—N1—C10—C51.5 (2)N4—C3—C21—C2232.6 (2)
C2—N1—C10—C9179.42 (16)C2—C3—C21—C22148.19 (15)
N4—C5—C10—N14.7 (2)C26—C21—C22—C232.3 (2)
N6—C5—C10—N1175.85 (15)C3—C21—C22—C23178.29 (15)
N4—C5—C10—C9177.38 (16)C21—C22—C23—C241.4 (3)
N6—C5—C10—C92.1 (3)C22—C23—C24—F1179.53 (16)
C8—C9—C10—N1176.83 (18)C22—C23—C24—C250.6 (3)
C8—C9—C10—C51.1 (3)F1—C24—C25—C26178.49 (16)
N1—C2—C11—C16128.17 (16)C23—C24—C25—C261.7 (3)
C3—C2—C11—C1649.8 (2)C24—C25—C26—C210.7 (3)
N1—C2—C11—C1246.3 (2)C22—C21—C26—C251.2 (2)
C3—C2—C11—C12135.71 (16)C3—C21—C26—C25177.00 (15)
C16—C11—C12—C130.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N6i0.912.323.166 (2)154
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18FN5
Mr359.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.042 (1), 7.6586 (2), 20.095 (2)
β (°) 100.215 (5)
V3)1823.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.743, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
3578, 3468, 2912
Rint0.063
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.05
No. of reflections3468
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N6i0.912.323.166 (2)154
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y. & Lindsley, C. W. (2004). Tetrahedron Lett. 45, 4873–4876.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds