organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-{3,3,4,4,5,5-Hexa­fluoro-2-[5-(3-meth­oxy­phen­yl)-2-methyl-3-thien­yl]cyclo­pent-1-en­yl}-5-methyl-2-thien­yl)benzo­nitrile

aCollege of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou 344000, People's Republic of China, and bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: congbinfan@yahoo.com.cn

(Received 17 July 2009; accepted 30 August 2009; online 5 September 2009)

The title compound, C29H19F6NOS2, is a new unsymmetrical photochromic diarylethene derivative with different meta-phenyl substituents. The distance between the two reactive (i.e. can be irradiated to form a new chemical bond) C atoms is 3.501 (4) Å; the dihedral angles between the mean plane of the main central cyclo­pentene ring and the thio­phene rings are 47.7 (5) and 45.1 (2)°, and those between the thio­phene rings and the adjacent benzene rings are 29.4 (2) and 28.4 (3)°. The three C atoms and the F atoms of hexa­fuorocyclo­pentene ring are disordered over two positions, with site-occupancy factors of 0.751 (4) and 0.249 (4).

Related literature

For related compounds, see: Irie (2000[Irie, M. (2000). Chem. Rev. 100, 1685-1716.]); Irie et al. (2001[Irie, M., Kobatake, S. & Horichi, M. (2001). Science, 291, 1769-1772.]); Pu et al. (2007[Pu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett. 9, 2139-2142.], 2008[Pu, S.-Z., Zheng, C.-H., Le, Z.-G., Liu, G. & Fan, C.-B. (2008). Tetrahedron, 64, 2576-2585.]). For the synthesis of the precursors, see: Pu et al. (2006[Pu, S.-Z., Wen, Z.-D. & Yan, L.-S. (2006). Acta Cryst. E62, o5681-o5683.]); Yang et al. (2007[Yang, T.-S., Pu, S.-Z., Chen, B. & Xu, J.-K. (2007). Can. J. Chem. 85, 12-20.]). For ring-closure reactions, see: Ramamurthy & Venkatesan (1987[Ramamurthy, V. & Venkatesan, K. (1987). Chem. Rev. 87, 433-481.]).

[Scheme 1]

Experimental

Crystal data
  • C29H19F6NOS2

  • Mr = 575.57

  • Triclinic, [P \overline 1]

  • a = 8.6134 (11) Å

  • b = 11.5938 (15) Å

  • c = 14.5281 (19) Å

  • α = 68.346 (2)°

  • β = 88.783 (2)°

  • γ = 82.158 (2)°

  • V = 1335.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.974

  • 10275 measured reflections

  • 4948 independent reflections

  • 3155 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.03

  • 4948 reflections

  • 383 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Photochromic diarylethene is one of the most promising candidates for photoelectronic applications, such as optical storage (Irie, 2000; Pu et al., 2008), photoswitches (Irie et al., 2001; Pu et al., 2007) and waveguides. In the hexafluorocyclophentene ring of the title compound, C1=C5 [1.342 (4) Å] is clearly a double bond, being significantly shorter than the other single bonds, such as C1-C2 [1.502 (6) Å], C2-C3 [1.530 (6) Å], C3-C4 [1.583 (1) Å], C1-C7 [1.467 (4) Å], C5-C19 [1.471 (4) Å]. The title compound shows a photoactive antiparallel conformation (Fig. 1). The two independent planar thiophene ring systems have essentially identical geometries, and the dihedral angles between the main central cyclopent-1-ene ring and those of the two thiophene rings, S1/C6-C9 and S2/C18-C21, are 47.7 (5) and 45.1 (2)°, respectively. The dihedral angle between the thiophene and adjacent benzene ring is 29.4 (2)° for the C11-C16 benzene ring and 28.4 (3)° for the C23-C28 benzene ring. The two thiophene groups are linked by the C1=C5 double bond, with both of them attached to the ethylene group via the 2-position. The distance between the two reactive C atoms (C6···C18) is 3.501 (4) Å, which is short enough, theoretically, for the ring-closure reaction to take place in the crystalline phase (Ramamurthy & Venkatesan, 1987). Crystals of the title compound (1a) show photochromism in accordance with the expected ring closure, to form (1b) (Fig. 2); upon irradiation with 313 nm light, the colorless crystals turn blue rapidly. The blue compound when dissolved in hexane displays an absorption maximum at 583 nm. Upon irradiation with visible light with a wavelength greater than 450 nm, the blue crystals again turn initial colorless; a hexane solution has an absorption maximum at 294 nm.

Related literature top

For related compounds, see: Irie (2000); Irie et al. (2001); Pu et al. (2007, 2008). For the synthesis of the precursors, see: Pu et al. (2006); Yang et al. (2007). For ring-closure reactions, see: Ramamurthy & Venkatesan (1987).

Experimental top

The title compound was originally derived from 3-bromo-5-(3-methoxyphenyl)-2-methylthiophene (1) (Yang et al., 2007) (5.0 g, 17.6 mmol) with an n-BuLi/hexane solution (7.1 mL, 2.5 M, 17.6 mmol) at 195 K under a nitrogen atmosphere, after 30 min, perfluorocyclopentene (2.2 mL, 17.6 mmol) was added quickly to the reaction solution. The mixture was stirred for 3 h at this temperature. The reaction mixture was filtered and evaporated in vacuo. The residue was purified by column chromatography on silica gel (hexane) to give (2-methyl-5- (3-methoxylphenyl)thiophene)perfluorocyclopent-1-ene, (2) (4.53 g, 11.3 mmol). Finally, to a stirred THF solution (50 ml) of 3-bromo-5-(3-cyanophenyl)-2-methylthiophene, (3) (Pu et al., 2006) (2.6 g, 9.6 mmol), an n-BuLi/hexane solution (3.8 ml, 2.5 M, 9.6 mmol) was slowly added in at 195 K under a nitrogen atmosphere. After 30 min, compound (2) (3.8 g, 9.6 mmol) was added and the mixture was stirred for 2 h at this temperature. The reaction mixture was extracted with diethyl ether and evaporated in vacuo, then purified by column chromatography (petroleum ether) to give the title compound, (Ia) (2.41 g, 4.2 mmol), in 43.7% yield. 1H NMR (400 MHz, CDCl3, TMS): δ 1.88 (s, 3H, -CH3),1.90 (s, 3H, -CH3), 3.76 (s, 3H, -OCH3), 6.76-6.78 (dd, 1H, Hz, thiophene-H), 6.97 (s, 1H, thiophene-H), 7.04, 7.06 (d, 1H, J=8.0 Hz, phenyl -H), 7.17-7.24 (m, 2H, phenyl -H), 7.27 (s, 1H, phenyl-H), 7.41 (t, 1H, J=8.0 Hz, phenyl -H), 7.48, 7.50 (d, 1H, J=8.0 Hz, phenyl -H), 7.66, 7.68 (d, 1H, J=8.0 Hz, phenyl -H), 7.72 (s, 1H, phenyl-H); Elemental analysis: calc. for C29H19F6NOS2: C 60.20, H 3.83%. Found: C 58.84, H 3.77%; m.p.: 369.4–370.8 K.

Refinement top

All H atoms attached to C were geometrically positioned and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). The cyclopent-1-ene ring in C2, C3, C4-envelope conformation is disorder. The occupancies of the disorder components were refined to 0.751 (4):0.249 (4) for C2:C2', C3:C3', C4:C4' and F1:F1', F2:F2', F3:F3', F4:F4', F5:F5', F6:F6'. The disordered atoms were refined with bond restraints of C—F = 1.34 (1) and C—C = 1.50 (1) Å, and with constraints of same displacement parameters for major and minor atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Only the major component of the disordered groups are shown.
[Figure 2] Fig. 2. Photochromic interconvertion of the title compound.
3-(4-{3,3,4,4,5,5-Hexafluoro-2-[5-(3-methoxyphenyl)-2-methyl-3- thienyl]cyclopent-1-enyl}-5-methyl-2-thienyl)benzonitrile top
Crystal data top
C29H19F6NOS2Z = 2
Mr = 575.57F(000) = 588
Triclinic, P1Dx = 1.432 Mg m3
a = 8.6134 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5938 (15) ÅCell parameters from 1963 reflections
c = 14.5281 (19) Åθ = 2.4–21.8°
α = 68.346 (2)°µ = 0.27 mm1
β = 88.783 (2)°T = 296 K
γ = 82.158 (2)°Block, colourless
V = 1335.1 (3) Å30.15 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4948 independent reflections
Radiation source: fine-focus sealed tube3155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.961, Tmax = 0.974k = 1414
10275 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1414P]
where P = (Fo2 + 2Fc2)/3
4948 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.30 e Å3
16 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H19F6NOS2γ = 82.158 (2)°
Mr = 575.57V = 1335.1 (3) Å3
Triclinic, P1Z = 2
a = 8.6134 (11) ÅMo Kα radiation
b = 11.5938 (15) ŵ = 0.27 mm1
c = 14.5281 (19) ÅT = 296 K
α = 68.346 (2)°0.15 × 0.13 × 0.10 mm
β = 88.783 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4948 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3155 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.974Rint = 0.029
10275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04916 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
4948 reflectionsΔρmin = 0.23 e Å3
383 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.8607 (7)0.8219 (8)0.1970 (5)0.0616 (8)0.751 (4)
C30.9550 (6)0.8673 (5)0.2620 (5)0.0653 (13)0.751 (4)
C40.8293 (11)0.9522 (4)0.2991 (4)0.0510 (14)0.751 (4)
F10.9173 (6)0.7019 (6)0.2107 (4)0.0911 (14)0.751 (4)
F20.8822 (6)0.8920 (4)0.1004 (4)0.0963 (15)0.751 (4)
F31.0171 (4)0.7695 (3)0.3431 (2)0.1018 (11)0.751 (4)
F41.0726 (3)0.9286 (4)0.2184 (3)0.0965 (11)0.751 (4)
F50.8628 (3)0.9419 (3)0.3914 (2)0.0814 (9)0.751 (4)
F60.8338 (4)1.0749 (3)0.2401 (2)0.0802 (11)0.751 (4)
C2'0.8610 (15)0.822 (2)0.1990 (15)0.0616 (8)0.249 (4)
C3'0.9453 (17)0.9039 (17)0.2351 (15)0.0653 (13)0.249 (4)
C4'0.848 (4)0.9271 (15)0.2995 (13)0.0510 (14)0.249 (4)
F1'0.904 (2)0.700 (2)0.2492 (14)0.0911 (14)0.249 (4)
F2'0.877 (2)0.8315 (16)0.1047 (14)0.0963 (15)0.249 (4)
F3'1.0853 (14)0.8369 (11)0.2718 (9)0.1018 (11)0.249 (4)
F4'0.9731 (9)0.9989 (10)0.1527 (8)0.0965 (11)0.249 (4)
F5'0.8899 (11)0.8652 (10)0.3949 (8)0.0814 (9)0.249 (4)
F6'0.8456 (16)1.0469 (13)0.2921 (9)0.0802 (11)0.249 (4)
C10.6932 (3)0.8443 (2)0.2242 (2)0.0474 (7)
C50.6795 (3)0.9091 (2)0.28436 (19)0.0460 (7)
C60.4380 (3)0.8805 (2)0.13185 (19)0.0451 (6)
C70.5704 (3)0.8033 (2)0.1798 (2)0.0461 (7)
C80.5748 (3)0.6789 (3)0.1826 (2)0.0516 (7)
H80.65800.61590.21110.062*
C90.4467 (3)0.6608 (2)0.1399 (2)0.0482 (7)
C100.3912 (3)1.0166 (2)0.1107 (2)0.0545 (7)
H10A0.33331.02700.16500.082*
H10B0.32691.05330.05110.082*
H10C0.48341.05710.10240.082*
C110.4066 (4)0.5459 (3)0.1315 (2)0.0520 (7)
C120.2517 (4)0.5282 (3)0.1271 (2)0.0593 (8)
H120.17220.58940.13040.071*
C130.2130 (4)0.4207 (3)0.1178 (2)0.0673 (9)
C140.3297 (5)0.3315 (3)0.1111 (2)0.0739 (10)
H140.30460.26020.10290.089*
C150.4834 (5)0.3476 (3)0.1163 (2)0.0688 (9)
H150.56200.28610.11260.083*
C160.5244 (4)0.4538 (3)0.1270 (2)0.0620 (8)
H160.62930.46310.13100.074*
C170.0082 (6)0.3090 (4)0.1022 (4)0.1315 (19)
H17A0.05230.30220.04290.197*
H17B0.10420.31930.09650.197*
H17C0.04420.23430.15800.197*
C180.4268 (3)0.8736 (3)0.37482 (19)0.0480 (7)
C190.5397 (3)0.9477 (2)0.33159 (19)0.0452 (7)
C200.5058 (3)1.0699 (3)0.33379 (19)0.0480 (7)
H200.57201.13060.30870.058*
C210.3672 (3)1.0900 (3)0.3761 (2)0.0503 (7)
C220.4206 (4)0.7390 (3)0.3910 (2)0.0602 (8)
H22A0.36390.73430.33660.090*
H22B0.36870.70030.45150.090*
H22C0.52530.69620.39510.090*
C230.2932 (3)1.2076 (3)0.38317 (19)0.0511 (7)
C240.1306 (4)1.2368 (3)0.3827 (2)0.0610 (8)
H240.06661.17970.37990.073*
C250.0641 (4)1.3508 (3)0.3865 (2)0.0698 (9)
C260.1566 (5)1.4367 (3)0.3904 (2)0.0796 (10)
H260.11101.51260.39350.095*
C270.3175 (5)1.4096 (3)0.3896 (3)0.0760 (10)
H270.38051.46790.39120.091*
C280.3851 (4)1.2964 (3)0.3863 (2)0.0619 (8)
H280.49371.27890.38630.074*
C290.1043 (5)1.3799 (4)0.3840 (3)0.0919 (13)
N10.2356 (4)1.4047 (4)0.3815 (3)0.1329 (16)
O10.0558 (3)0.4145 (2)0.1161 (2)0.0975 (9)
S10.32016 (9)0.79945 (7)0.09174 (5)0.0523 (2)
S20.28003 (9)0.95549 (7)0.41707 (6)0.0570 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0492 (19)0.066 (2)0.075 (2)0.0006 (16)0.0011 (16)0.0354 (18)
C30.036 (2)0.067 (4)0.096 (5)0.000 (2)0.005 (2)0.035 (3)
C40.048 (3)0.050 (3)0.063 (2)0.008 (3)0.0055 (16)0.0309 (19)
F10.0546 (17)0.0930 (16)0.155 (5)0.0099 (12)0.006 (3)0.087 (3)
F20.0647 (14)0.153 (5)0.0747 (16)0.029 (3)0.0199 (11)0.042 (3)
F30.092 (2)0.095 (2)0.114 (3)0.0270 (18)0.0439 (19)0.045 (2)
F40.0457 (17)0.140 (3)0.145 (3)0.0392 (19)0.0381 (17)0.093 (2)
F50.0607 (16)0.130 (3)0.0804 (16)0.0208 (19)0.0012 (12)0.067 (2)
F60.0650 (15)0.057 (2)0.115 (3)0.0247 (14)0.024 (2)0.023 (2)
C2'0.0492 (19)0.066 (2)0.075 (2)0.0006 (16)0.0011 (16)0.0354 (18)
C3'0.036 (2)0.067 (4)0.096 (5)0.000 (2)0.005 (2)0.035 (3)
C4'0.048 (3)0.050 (3)0.063 (2)0.008 (3)0.0055 (16)0.0309 (19)
F1'0.0546 (17)0.0930 (16)0.155 (5)0.0099 (12)0.006 (3)0.087 (3)
F2'0.0647 (14)0.153 (5)0.0747 (16)0.029 (3)0.0199 (11)0.042 (3)
F3'0.092 (2)0.095 (2)0.114 (3)0.0270 (18)0.0439 (19)0.045 (2)
F4'0.0457 (17)0.140 (3)0.145 (3)0.0392 (19)0.0381 (17)0.093 (2)
F5'0.0607 (16)0.130 (3)0.0804 (16)0.0208 (19)0.0012 (12)0.067 (2)
F6'0.0650 (15)0.057 (2)0.115 (3)0.0247 (14)0.024 (2)0.023 (2)
C10.0408 (16)0.0449 (16)0.0557 (17)0.0031 (13)0.0014 (13)0.0187 (14)
C50.0428 (16)0.0451 (15)0.0501 (16)0.0076 (12)0.0010 (13)0.0170 (13)
C60.0476 (16)0.0459 (16)0.0465 (16)0.0076 (13)0.0049 (13)0.0224 (13)
C70.0415 (16)0.0491 (16)0.0538 (17)0.0065 (13)0.0037 (13)0.0261 (14)
C80.0479 (17)0.0475 (17)0.0603 (18)0.0008 (13)0.0026 (14)0.0231 (14)
C90.0516 (17)0.0431 (15)0.0531 (17)0.0030 (13)0.0019 (13)0.0226 (13)
C100.0567 (18)0.0443 (16)0.0621 (19)0.0028 (14)0.0032 (14)0.0205 (14)
C110.066 (2)0.0456 (16)0.0459 (16)0.0046 (15)0.0030 (14)0.0198 (13)
C120.068 (2)0.0485 (17)0.0628 (19)0.0063 (15)0.0068 (16)0.0218 (15)
C130.087 (3)0.0470 (18)0.068 (2)0.0173 (18)0.0074 (18)0.0186 (16)
C140.115 (3)0.0417 (18)0.069 (2)0.018 (2)0.003 (2)0.0227 (16)
C150.094 (3)0.0420 (18)0.068 (2)0.0048 (18)0.0031 (19)0.0227 (16)
C160.075 (2)0.0513 (18)0.0618 (19)0.0045 (16)0.0054 (16)0.0252 (15)
C170.135 (4)0.084 (3)0.179 (5)0.048 (3)0.038 (3)0.038 (3)
C180.0487 (17)0.0518 (16)0.0472 (16)0.0107 (13)0.0008 (13)0.0212 (14)
C190.0427 (16)0.0483 (16)0.0472 (16)0.0083 (13)0.0006 (13)0.0200 (13)
C200.0450 (17)0.0511 (17)0.0520 (16)0.0127 (13)0.0014 (13)0.0218 (14)
C210.0439 (17)0.0579 (18)0.0505 (16)0.0038 (14)0.0013 (13)0.0228 (14)
C220.068 (2)0.0564 (18)0.0583 (18)0.0188 (16)0.0079 (15)0.0204 (15)
C230.0500 (17)0.0582 (18)0.0454 (16)0.0004 (14)0.0003 (13)0.0221 (14)
C240.056 (2)0.067 (2)0.0564 (18)0.0040 (16)0.0048 (15)0.0202 (16)
C250.061 (2)0.070 (2)0.062 (2)0.0079 (18)0.0113 (16)0.0133 (18)
C260.090 (3)0.062 (2)0.078 (2)0.018 (2)0.005 (2)0.0260 (19)
C270.087 (3)0.059 (2)0.086 (2)0.0044 (19)0.002 (2)0.0330 (19)
C280.059 (2)0.063 (2)0.067 (2)0.0024 (16)0.0043 (16)0.0303 (17)
C290.067 (3)0.087 (3)0.091 (3)0.017 (2)0.022 (2)0.008 (2)
N10.078 (3)0.123 (3)0.143 (3)0.021 (2)0.034 (2)0.001 (2)
O10.096 (2)0.0707 (16)0.129 (2)0.0306 (15)0.0231 (17)0.0324 (16)
S10.0505 (4)0.0490 (4)0.0619 (5)0.0042 (3)0.0044 (3)0.0264 (4)
S20.0502 (5)0.0664 (5)0.0616 (5)0.0165 (4)0.0121 (4)0.0295 (4)
Geometric parameters (Å, º) top
C2—F11.352 (5)C12—C131.386 (4)
C2—F21.361 (6)C12—H120.9300
C2—C11.502 (6)C13—O11.367 (4)
C2—C31.530 (6)C13—C141.370 (5)
C3—F41.331 (5)C14—C151.370 (5)
C3—F31.354 (5)C14—H140.9300
C3—C41.583 (11)C15—C161.388 (4)
C4—F51.337 (5)C15—H150.9300
C4—F61.369 (5)C16—H160.9300
C4—C51.492 (8)C17—O11.424 (4)
C2'—F2'1.340 (10)C17—H17A0.9600
C2'—F1'1.339 (10)C17—H17B0.9600
C2'—C11.494 (10)C17—H17C0.9600
C2'—C3'1.505 (10)C18—C191.372 (4)
C3'—F4'1.338 (10)C18—C221.499 (4)
C3'—F3'1.345 (10)C18—S21.716 (3)
C3'—C4'1.32 (4)C19—C201.420 (4)
C4'—F5'1.334 (10)C20—C211.362 (4)
C4'—F6'1.350 (10)C20—H200.9300
C4'—C51.53 (3)C21—C231.462 (4)
C1—C51.342 (4)C21—S21.722 (3)
C1—C71.467 (4)C22—H22A0.9600
C5—C191.471 (4)C22—H22B0.9600
C6—C71.371 (4)C22—H22C0.9600
C6—C101.490 (3)C23—C281.395 (4)
C6—S11.715 (3)C23—C241.395 (4)
C7—C81.423 (3)C24—C251.387 (4)
C8—C91.355 (4)C24—H240.9300
C8—H80.9300C25—C261.375 (5)
C9—C111.468 (4)C25—C291.441 (5)
C9—S11.727 (3)C26—C271.379 (5)
C10—H10A0.9600C26—H260.9300
C10—H10B0.9600C27—C281.379 (4)
C10—H10C0.9600C27—H270.9300
C11—C121.384 (4)C28—H280.9300
C11—C161.389 (4)C29—N11.126 (4)
F1—C2—F2106.8 (5)C12—C11—C16119.0 (3)
F1—C2—C1115.7 (5)C12—C11—C9120.8 (3)
F2—C2—C1111.1 (5)C16—C11—C9120.2 (3)
F1—C2—C3109.8 (6)C13—C12—C11121.1 (3)
F2—C2—C3108.3 (6)C13—C12—H12119.5
C1—C2—C3105.0 (4)C11—C12—H12119.5
F4—C3—F3106.9 (4)O1—C13—C14125.5 (3)
F4—C3—C4111.4 (5)O1—C13—C12114.9 (3)
F3—C3—C4107.3 (5)C14—C13—C12119.6 (3)
F4—C3—C2115.7 (6)C13—C14—C15119.8 (3)
F3—C3—C2110.6 (5)C13—C14—H14120.1
C4—C3—C2104.7 (5)C15—C14—H14120.1
F5—C4—F6106.4 (4)C14—C15—C16121.4 (3)
F5—C4—C5116.0 (6)C14—C15—H15119.3
F6—C4—C5111.9 (5)C16—C15—H15119.3
F5—C4—C3111.8 (5)C15—C16—C11119.1 (3)
F6—C4—C3108.4 (6)C15—C16—H16120.5
C5—C4—C3102.3 (4)C11—C16—H16120.5
F2'—C2'—F1'102.3 (18)O1—C17—H17A109.5
F2'—C2'—C1112.5 (15)O1—C17—H17B109.5
F1'—C2'—C1103.8 (14)H17A—C17—H17B109.5
F2'—C2'—C3'118.5 (18)O1—C17—H17C109.5
F1'—C2'—C3'113.2 (17)H17A—C17—H17C109.5
C1—C2'—C3'105.8 (11)H17B—C17—H17C109.5
F4'—C3'—F3'106.7 (13)C19—C18—C22129.6 (3)
F4'—C3'—C4'118.9 (17)C19—C18—S2110.3 (2)
F3'—C3'—C4'116.3 (19)C22—C18—S2120.0 (2)
F4'—C3'—C2'104.6 (18)C18—C19—C20112.7 (2)
F3'—C3'—C2'106.0 (16)C18—C19—C5125.0 (2)
C4'—C3'—C2'102.8 (16)C20—C19—C5122.3 (2)
F5'—C4'—F6'101.1 (13)C21—C20—C19113.8 (2)
F5'—C4'—C5108 (2)C21—C20—H20123.1
F6'—C4'—C5107 (2)C19—C20—H20123.1
F5'—C4'—C3'116 (2)C20—C21—C23127.3 (3)
F6'—C4'—C3'110 (2)C20—C21—S2110.0 (2)
C5—C4'—C3'113.5 (15)C23—C21—S2122.7 (2)
C5—C1—C7129.3 (2)C18—C22—H22A109.5
C5—C1—C2'110.0 (9)C18—C22—H22B109.5
C7—C1—C2'120.6 (9)H22A—C22—H22B109.5
C5—C1—C2111.0 (4)C18—C22—H22C109.5
C7—C1—C2119.5 (4)H22A—C22—H22C109.5
C1—C5—C19129.6 (2)H22B—C22—H22C109.5
C1—C5—C4'103.5 (10)C28—C23—C24118.2 (3)
C19—C5—C4'126.8 (9)C28—C23—C21120.1 (3)
C1—C5—C4112.9 (3)C24—C23—C21121.6 (3)
C19—C5—C4117.5 (4)C25—C24—C23120.2 (3)
C7—C6—C10129.4 (2)C25—C24—H24119.9
C7—C6—S1110.49 (19)C23—C24—H24119.9
C10—C6—S1120.1 (2)C26—C25—C24120.8 (3)
C6—C7—C8112.6 (2)C26—C25—C29120.0 (3)
C6—C7—C1123.7 (2)C24—C25—C29119.2 (4)
C8—C7—C1123.7 (2)C25—C26—C27119.6 (3)
C9—C8—C7113.7 (2)C25—C26—H26120.2
C9—C8—H8123.1C27—C26—H26120.2
C7—C8—H8123.1C28—C27—C26120.1 (3)
C8—C9—C11129.6 (3)C28—C27—H27119.9
C8—C9—S1110.2 (2)C26—C27—H27119.9
C11—C9—S1120.3 (2)C27—C28—C23121.1 (3)
C6—C10—H10A109.5C27—C28—H28119.5
C6—C10—H10B109.5C23—C28—H28119.5
H10A—C10—H10B109.5N1—C29—C25178.8 (5)
C6—C10—H10C109.5C13—O1—C17117.6 (3)
H10A—C10—H10C109.5C6—S1—C992.97 (13)
H10B—C10—H10C109.5C18—S2—C2193.21 (13)
F1—C2—C3—F494.8 (6)C3—C4—C5—C116.5 (4)
F2—C2—C3—F421.6 (6)F5—C4—C5—C1944.6 (5)
C1—C2—C3—F4140.3 (5)F6—C4—C5—C1977.6 (5)
F1—C2—C3—F326.9 (6)C3—C4—C5—C19166.6 (3)
F2—C2—C3—F3143.2 (5)F5—C4—C5—C4'100 (4)
C1—C2—C3—F398.0 (5)F6—C4—C5—C4'138 (5)
F1—C2—C3—C4142.2 (4)C3—C4—C5—C4'22 (4)
F2—C2—C3—C4101.5 (5)C10—C6—C7—C8178.1 (3)
C1—C2—C3—C417.3 (6)S1—C6—C7—C80.5 (3)
F4—C3—C4—F589.5 (6)C10—C6—C7—C12.5 (4)
F3—C3—C4—F527.2 (7)S1—C6—C7—C1178.9 (2)
C2—C3—C4—F5144.8 (6)C5—C1—C7—C648.2 (4)
F4—C3—C4—F627.5 (7)C2'—C1—C7—C6127.5 (10)
F3—C3—C4—F6144.1 (5)C2—C1—C7—C6127.0 (4)
C2—C3—C4—F698.3 (6)C5—C1—C7—C8131.2 (3)
F4—C3—C4—C5145.8 (5)C2'—C1—C7—C853.2 (11)
F3—C3—C4—C597.5 (5)C2—C1—C7—C853.6 (5)
C2—C3—C4—C520.0 (5)C6—C7—C8—C91.5 (3)
F2'—C2'—C3'—F4'21.7 (19)C1—C7—C8—C9177.9 (3)
F1'—C2'—C3'—F4'141.4 (14)C7—C8—C9—C11177.7 (3)
C1—C2'—C3'—F4'105.6 (16)C7—C8—C9—S11.9 (3)
F2'—C2'—C3'—F3'91 (2)C8—C9—C11—C12150.9 (3)
F1'—C2'—C3'—F3'28.8 (18)S1—C9—C11—C1228.6 (4)
C1—C2'—C3'—F3'141.8 (14)C8—C9—C11—C1629.7 (4)
F2'—C2'—C3'—C4'146.6 (15)S1—C9—C11—C16150.8 (2)
F1'—C2'—C3'—C4'93.7 (14)C16—C11—C12—C130.3 (4)
C1—C2'—C3'—C4'19.3 (17)C9—C11—C12—C13179.1 (3)
F4'—C3'—C4'—F5'140.1 (16)C11—C12—C13—O1178.9 (3)
F3'—C3'—C4'—F5'10 (3)C11—C12—C13—C141.2 (5)
C2'—C3'—C4'—F5'105 (2)O1—C13—C14—C15178.3 (3)
F4'—C3'—C4'—F6'26 (3)C12—C13—C14—C151.8 (5)
F3'—C3'—C4'—F6'104 (2)C13—C14—C15—C160.9 (5)
C2'—C3'—C4'—F6'141.1 (17)C14—C15—C16—C110.6 (5)
F4'—C3'—C4'—C594 (2)C12—C11—C16—C151.1 (4)
F3'—C3'—C4'—C5136.5 (16)C9—C11—C16—C15178.2 (3)
C2'—C3'—C4'—C521.2 (16)C22—C18—C19—C20177.6 (3)
F2'—C2'—C1—C5141.7 (14)S2—C18—C19—C200.3 (3)
F1'—C2'—C1—C5108.5 (15)C22—C18—C19—C54.4 (5)
C3'—C2'—C1—C510.9 (15)S2—C18—C19—C5177.7 (2)
F2'—C2'—C1—C735 (2)C1—C5—C19—C1842.1 (4)
F1'—C2'—C1—C775.1 (15)C4'—C5—C19—C18133.1 (7)
C3'—C2'—C1—C7165.6 (8)C4—C5—C19—C18141.5 (3)
F2'—C2'—C1—C215 (61)C1—C5—C19—C20135.7 (3)
F1'—C2'—C1—C295 (63)C4'—C5—C19—C2049.1 (8)
C3'—C2'—C1—C2146 (63)C4—C5—C19—C2040.6 (4)
F1—C2—C1—C5129.1 (6)C18—C19—C20—C211.4 (3)
F2—C2—C1—C5108.9 (5)C5—C19—C20—C21176.7 (2)
C3—C2—C1—C57.9 (6)C19—C20—C21—C23175.1 (2)
F1—C2—C1—C754.9 (7)C19—C20—C21—S21.8 (3)
F2—C2—C1—C767.1 (7)C20—C21—C23—C2828.5 (4)
C3—C2—C1—C7176.0 (3)S2—C21—C23—C28155.0 (2)
F1—C2—C1—C2'105 (62)C20—C21—C23—C24148.8 (3)
F2—C2—C1—C2'133 (62)S2—C21—C23—C2427.7 (4)
C3—C2—C1—C2'16 (62)C28—C23—C24—C250.7 (4)
C7—C1—C5—C196.8 (5)C21—C23—C24—C25178.0 (3)
C2'—C1—C5—C19177.1 (9)C23—C24—C25—C260.2 (5)
C2—C1—C5—C19177.6 (4)C23—C24—C25—C29178.8 (3)
C7—C1—C5—C4'177.1 (6)C24—C25—C26—C270.6 (5)
C2'—C1—C5—C4'1.1 (11)C29—C25—C26—C27178.0 (3)
C2—C1—C5—C4'1.6 (7)C25—C26—C27—C280.9 (5)
C7—C1—C5—C4169.6 (3)C26—C27—C28—C230.4 (5)
C2'—C1—C5—C46.4 (10)C24—C23—C28—C270.4 (4)
C2—C1—C5—C45.9 (5)C21—C23—C28—C27177.8 (3)
F5'—C4'—C5—C1115.1 (14)C14—C13—O1—C172.6 (5)
F6'—C4'—C5—C1136.6 (12)C12—C13—O1—C17177.3 (3)
C3'—C4'—C5—C115.1 (13)C7—C6—S1—C90.5 (2)
F5'—C4'—C5—C1961.1 (15)C10—C6—S1—C9179.3 (2)
F6'—C4'—C5—C1947.2 (15)C8—C9—S1—C61.4 (2)
C3'—C4'—C5—C19168.7 (9)C11—C9—S1—C6178.2 (2)
F5'—C4'—C5—C4101 (5)C19—C18—S2—C210.6 (2)
F6'—C4'—C5—C47 (3)C22—C18—S2—C21178.7 (2)
C3'—C4'—C5—C4129 (5)C20—C21—S2—C181.4 (2)
F5—C4—C5—C1138.4 (4)C23—C21—S2—C18175.7 (2)
F6—C4—C5—C199.4 (5)

Experimental details

Crystal data
Chemical formulaC29H19F6NOS2
Mr575.57
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.6134 (11), 11.5938 (15), 14.5281 (19)
α, β, γ (°)68.346 (2), 88.783 (2), 82.158 (2)
V3)1335.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10275, 4948, 3155
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.03
No. of reflections4948
No. of parameters383
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the fund of the Key Laboratory of Nuclear Resources and Environment, East China Institute of Technology, Ministry of Education, China (No. 060607), the Key Scientific Project of the Education Ministry of China (208069), and the Graduate Innovation Fund of East China Institute of Technology (DYCA09002).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIrie, M. (2000). Chem. Rev. 100, 1685–1716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIrie, M., Kobatake, S. & Horichi, M. (2001). Science, 291, 1769–1772.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett. 9, 2139–2142.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPu, S.-Z., Wen, Z.-D. & Yan, L.-S. (2006). Acta Cryst. E62, o5681–o5683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPu, S.-Z., Zheng, C.-H., Le, Z.-G., Liu, G. & Fan, C.-B. (2008). Tetrahedron, 64, 2576–2585.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamamurthy, V. & Venkatesan, K. (1987). Chem. Rev. 87, 433–481.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T.-S., Pu, S.-Z., Chen, B. & Xu, J.-K. (2007). Can. J. Chem. 85, 12–20.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds