metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[pyridinecopper(II)]-μ-N-[(2-oxido-1-naphth­yl)methyl­ene]glycinato]

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: xlingwei@163.com

(Received 13 August 2009; accepted 16 September 2009; online 26 September 2009)

In the title compound, [Cu(C13H9NO3)(C5H5N)], the CuII atom is coordinated in a distorted square-pyramidal geometry, with two N and two O atoms in the basal positions and one O atom in the apical position. The apical Cu—O bond [2.3520 (16) Å] is much longer than the basal Cu—O and Cu—N bonds [1.9139 (14)–2.0136 (17) Å]. The carboxyl­ate group bridges CuII atoms, forming a zigzag chain along the a axis.

Related literature

For related structures, see: Basu Baul et al. (2007[Basu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]); Casella & Gullotti (1983[Casella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259-2266.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H9NO3)(C5H5N)]

  • Mr = 369.85

  • Monoclinic, P 21 /c

  • a = 14.508 (4) Å

  • b = 11.747 (3) Å

  • c = 9.407 (3) Å

  • β = 101.805 (3)°

  • V = 1569.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.703

  • 7938 measured reflections

  • 2770 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.04

  • 2770 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9139 (14)
Cu1—N1 1.9296 (17)
Cu1—O2 1.9702 (14)
Cu1—N2 2.0136 (17)
Cu1—O3i 2.3520 (16)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Casella & Gullotti, 1983). A few structural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

The structure consists of a square pyramidal CuII complex (Fig. 1 and Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the pyridine ligand. The fifth position is occupied by one O atom from the adjacent tridentate Schiff base ligand.

The crystal structure is stabilized by the long-distance coordination of Cu1 and O3 (Fig. 2 and Table 2). The distance of Cu1—O3 bonds is 2.3520 (16) Å, and the distance of the two Cu(II) atoms is 6.013 Å.

Related literature top

For related structures, see: Basu Baul et al. (2007); Parekh et al. (2006); Usman et al. (2003); Vigato & Tamburini (2004); Casella & Gullotti (1983).

Experimental top

The title compound was synthesized as described in the literature. To glycine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol and 5 ml of water was added 2-hydroxy-1-naphthaldehyde (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to Cu(II) nitrate hexahydrate (1.00 mmol) and pyridine (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The brown solution was filtered and left for several days, brown crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis.
catena-Poly[[pyridinecopper(II)]-µ-N- [(2-oxido-1-naphthyl)methylene]glycinato] top
Crystal data top
[Cu(C13H9NO3)(C5H5N)]F(000) = 756
Mr = 369.85Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4385 reflections
a = 14.508 (4) Åθ = 2.3–27.5°
b = 11.747 (3) ŵ = 1.41 mm1
c = 9.407 (3) ÅT = 296 K
β = 101.805 (3)°Block, brown
V = 1569.5 (8) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2770 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.662, Tmax = 0.703k = 1313
7938 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6894P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2770 reflectionsΔρmax = 0.26 e Å3
218 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (6)
Crystal data top
[Cu(C13H9NO3)(C5H5N)]V = 1569.5 (8) Å3
Mr = 369.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.508 (4) ŵ = 1.41 mm1
b = 11.747 (3) ÅT = 296 K
c = 9.407 (3) Å0.30 × 0.30 × 0.25 mm
β = 101.805 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2460 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.703Rint = 0.018
7938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2770 reflectionsΔρmin = 0.23 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.754799 (16)0.40947 (2)0.14007 (3)0.03547 (11)
C10.58094 (14)0.47447 (17)0.2269 (2)0.0363 (5)
C20.53738 (17)0.5434 (2)0.3195 (3)0.0499 (6)
H20.57340.59670.37970.060*
C30.44485 (18)0.5327 (2)0.3216 (3)0.0555 (6)
H30.41940.57740.38550.067*
C40.38571 (16)0.4559 (2)0.2299 (3)0.0468 (6)
C50.28967 (18)0.4444 (3)0.2361 (3)0.0638 (7)
H50.26570.48640.30410.077*
C60.23200 (19)0.3736 (3)0.1457 (4)0.0716 (8)
H60.16930.36590.15250.086*
C70.26763 (17)0.3122 (2)0.0417 (3)0.0645 (7)
H70.22790.26470.02240.077*
C80.36069 (15)0.3211 (2)0.0331 (3)0.0494 (6)
H80.38270.28010.03780.059*
C90.42367 (15)0.39105 (17)0.1292 (2)0.0389 (5)
C100.52409 (14)0.39925 (16)0.1297 (2)0.0335 (4)
C110.56303 (14)0.33185 (17)0.0311 (2)0.0354 (5)
H110.52140.28840.03570.042*
C120.68024 (15)0.25177 (19)0.0810 (2)0.0436 (5)
H12A0.63760.26120.17420.052*
H12B0.67750.17290.05150.052*
C130.77987 (14)0.28074 (17)0.0955 (2)0.0358 (5)
C140.93488 (18)0.5307 (3)0.1688 (3)0.0643 (7)
H140.93530.49590.08020.077*
C151.0076 (2)0.6014 (3)0.2262 (4)0.0809 (10)
H151.05600.61460.17680.097*
C161.00878 (19)0.6523 (3)0.3557 (4)0.0771 (9)
H161.05720.70170.39570.093*
C170.9372 (2)0.6294 (3)0.4269 (4)0.0774 (9)
H170.93710.66130.51730.093*
C180.86512 (17)0.5579 (2)0.3615 (3)0.0601 (7)
H180.81610.54360.40900.072*
N10.65107 (11)0.32565 (14)0.02613 (18)0.0353 (4)
N20.86312 (12)0.50919 (16)0.2340 (2)0.0424 (4)
O10.67150 (10)0.48556 (12)0.24244 (16)0.0414 (3)
O20.82497 (9)0.34878 (13)0.00179 (15)0.0400 (3)
O30.81199 (11)0.23568 (14)0.19287 (17)0.0514 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03099 (16)0.03984 (17)0.03662 (17)0.00672 (10)0.00934 (11)0.00578 (11)
C10.0389 (12)0.0339 (11)0.0372 (11)0.0025 (9)0.0102 (9)0.0061 (9)
C20.0500 (14)0.0490 (14)0.0523 (14)0.0021 (11)0.0147 (11)0.0094 (11)
C30.0544 (15)0.0599 (15)0.0579 (16)0.0146 (12)0.0247 (12)0.0053 (13)
C40.0391 (12)0.0486 (13)0.0557 (14)0.0110 (11)0.0164 (11)0.0125 (11)
C50.0460 (15)0.0705 (17)0.081 (2)0.0161 (14)0.0276 (14)0.0127 (15)
C60.0327 (13)0.0795 (19)0.106 (2)0.0041 (14)0.0221 (15)0.0161 (18)
C70.0344 (13)0.0645 (16)0.092 (2)0.0042 (12)0.0073 (13)0.0084 (15)
C80.0360 (12)0.0474 (13)0.0645 (16)0.0012 (10)0.0095 (11)0.0067 (12)
C90.0339 (11)0.0350 (11)0.0482 (13)0.0049 (9)0.0094 (9)0.0136 (9)
C100.0315 (11)0.0326 (10)0.0367 (11)0.0026 (8)0.0080 (8)0.0072 (8)
C110.0324 (11)0.0352 (11)0.0375 (11)0.0038 (9)0.0045 (8)0.0014 (9)
C120.0375 (12)0.0467 (13)0.0483 (13)0.0069 (10)0.0130 (9)0.0136 (10)
C130.0360 (11)0.0367 (11)0.0354 (11)0.0006 (9)0.0089 (9)0.0009 (9)
C140.0480 (15)0.083 (2)0.0647 (17)0.0268 (14)0.0184 (13)0.0101 (15)
C150.0530 (17)0.098 (2)0.093 (2)0.0358 (16)0.0169 (16)0.0089 (19)
C160.0423 (16)0.0655 (19)0.114 (3)0.0164 (14)0.0072 (16)0.0147 (18)
C170.0533 (17)0.084 (2)0.087 (2)0.0036 (15)0.0049 (15)0.0427 (18)
C180.0399 (14)0.0733 (17)0.0659 (17)0.0066 (12)0.0079 (12)0.0227 (14)
N10.0324 (9)0.0383 (9)0.0365 (9)0.0034 (7)0.0102 (7)0.0055 (7)
N20.0355 (10)0.0449 (10)0.0458 (11)0.0082 (8)0.0059 (8)0.0046 (8)
O10.0363 (8)0.0436 (8)0.0452 (8)0.0046 (6)0.0106 (6)0.0091 (7)
O20.0334 (8)0.0491 (9)0.0390 (8)0.0071 (7)0.0107 (6)0.0067 (7)
O30.0468 (9)0.0618 (10)0.0512 (9)0.0097 (8)0.0233 (7)0.0191 (8)
Geometric parameters (Å, º) top
Cu1—O11.9139 (14)C9—C101.459 (3)
Cu1—N11.9296 (17)C10—C111.422 (3)
Cu1—O21.9702 (14)C11—N11.290 (3)
Cu1—N22.0136 (17)C11—H110.9300
Cu1—O3i2.3520 (16)C12—N11.457 (3)
C1—O11.298 (2)C12—C131.518 (3)
C1—C101.410 (3)C12—H12A0.9700
C1—C21.428 (3)C12—H12B0.9700
C2—C31.352 (3)C13—O31.229 (2)
C2—H20.9300C13—O21.268 (2)
C3—C41.411 (4)C14—N21.336 (3)
C3—H30.9300C14—C151.365 (4)
C4—C91.412 (3)C14—H140.9300
C4—C51.413 (3)C15—C161.354 (5)
C5—C61.350 (4)C15—H150.9300
C5—H50.9300C16—C171.373 (4)
C6—C71.397 (4)C16—H160.9300
C6—H60.9300C17—C181.383 (4)
C7—C81.373 (3)C17—H170.9300
C7—H70.9300C18—N21.324 (3)
C8—C91.411 (3)C18—H180.9300
C8—H80.9300O3—Cu1ii2.3520 (16)
O1—Cu1—N190.96 (7)C1—C10—C9119.63 (19)
O1—Cu1—O2167.63 (6)C11—C10—C9119.40 (19)
N1—Cu1—O283.77 (6)N1—C11—C10125.71 (19)
O1—Cu1—N291.38 (7)N1—C11—H11117.1
N1—Cu1—N2172.14 (7)C10—C11—H11117.1
O2—Cu1—N292.44 (7)N1—C12—C13110.20 (17)
O1—Cu1—O3i100.09 (6)N1—C12—H12A109.6
N1—Cu1—O3i97.45 (7)C13—C12—H12A109.6
O2—Cu1—O3i91.71 (6)N1—C12—H12B109.6
N2—Cu1—O3i89.52 (7)C13—C12—H12B109.6
O1—C1—C10125.43 (19)H12A—C12—H12B108.1
O1—C1—C2116.02 (19)O3—C13—O2124.69 (19)
C10—C1—C2118.5 (2)O3—C13—C12118.91 (19)
C3—C2—C1121.4 (2)O2—C13—C12116.38 (17)
C3—C2—H2119.3N2—C14—C15123.1 (3)
C1—C2—H2119.3N2—C14—H14118.5
C2—C3—C4122.1 (2)C15—C14—H14118.5
C2—C3—H3118.9C16—C15—C14119.4 (3)
C4—C3—H3118.9C16—C15—H15120.3
C3—C4—C9118.9 (2)C14—C15—H15120.3
C3—C4—C5121.2 (2)C15—C16—C17118.8 (3)
C9—C4—C5119.9 (2)C15—C16—H16120.6
C6—C5—C4121.5 (3)C17—C16—H16120.6
C6—C5—H5119.3C16—C17—C18118.7 (3)
C4—C5—H5119.3C16—C17—H17120.6
C5—C6—C7119.3 (2)C18—C17—H17120.6
C5—C6—H6120.4N2—C18—C17122.7 (3)
C7—C6—H6120.4N2—C18—H18118.7
C8—C7—C6120.8 (3)C17—C18—H18118.7
C8—C7—H7119.6C11—N1—C12119.25 (17)
C6—C7—H7119.6C11—N1—Cu1128.09 (14)
C7—C8—C9121.5 (2)C12—N1—Cu1112.60 (13)
C7—C8—H8119.3C18—N2—C14117.3 (2)
C9—C8—H8119.3C18—N2—Cu1121.30 (16)
C8—C9—C4117.0 (2)C14—N2—Cu1121.35 (17)
C8—C9—C10123.8 (2)C1—O1—Cu1128.69 (13)
C4—C9—C10119.2 (2)C13—O2—Cu1115.74 (12)
C1—C10—C11120.96 (18)C13—O3—Cu1ii132.41 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C13H9NO3)(C5H5N)]
Mr369.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.508 (4), 11.747 (3), 9.407 (3)
β (°) 101.805 (3)
V3)1569.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.662, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
7938, 2770, 2460
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.04
No. of reflections2770
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.9139 (14)Cu1—N22.0136 (17)
Cu1—N11.9296 (17)Cu1—O3i2.3520 (16)
Cu1—O21.9702 (14)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (No. 20877036) and the Top-class Foundation of Pingdingshan University (No. 2008010 and 2009001).

References

First citationBasu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds