organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Chloro­ethyl)morpholinium picrate

aDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Magalagangotri 574 199, India
*Correspondence e-mail: rk_paper@rediffmail.com

(Received 22 July 2009; accepted 2 September 2009; online 12 September 2009)

The title compound, C6H13ClNO+·C6H2N3O7, was synthesized from picric acid and 4-(2-chloro­ethyl)morpholine. The crystal structure is stabilized by C—H⋯O and N—H⋯O hydrogen-bond inter­actions.

Related literature

For the homeopathic uses of the metal derivatives of picric acid, see: Maurya et al. (1999[Maurya, R. C. & Sharma, P. (1999). Indian J. Chem. Sect. A, 38, 509-513.]). For the medical applications of ammonium picrate, see: Boericke (1982[Boericke, W. (1982). Homeopathic Materia Medica, 9th ed., pp. 46, 148, 228,369, 516 and 687. Calcutta: Roy Publishing House.]) and of morpholine derivatives, see: Lutz et al. (1947[Lutz, R. E., Rufus, K. A., Gilbert, A., Philip, S. B., Marion, T. C., John, F. C., Adolf, J. D., James, A. F., Robert, H. J., Norman, H. L., Tellis, A. M., Kent, C. N., Russel, J. R. Jr, Newton, H. S. Jr, Smith, J. D. & James, W. W. (1947). J. Org. Chem. 12, 617-703.]); Hazard et al. (1948[Hazard, R., Corteggiani, E. & Renard, S. H. (1948). Compt. Rend. 95, 227.]); Raymond et al. (1999[Raymond, G. M. & Dimitrios, A. D. (1999). Biocontrol Sci. Technol. 9, 53-65.]). For a related structure, see: Briggs et al. (2004[Briggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732-740.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13ClNO+·C6H2N3O7

  • Mr = 378.72

  • Triclinic, [P \overline 1]

  • a = 8.2063 (4) Å

  • b = 9.3075 (5) Å

  • c = 10.2896 (6) Å

  • α = 93.954 (5)°

  • β = 95.284 (5)°

  • γ = 90.376 (4)°

  • V = 780.65 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 8478 measured reflections

  • 4960 independent reflections

  • 3665 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.179

  • S = 1.12

  • 4960 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4′⋯O1 0.91 (3) 1.89 (3) 2.718 (2) 151.2 (19)
N4—H4′⋯O2 0.91 (3) 2.25 (2) 2.896 (2) 127.6 (17)
C2—H2⋯O3 0.83 (3) 2.34 (3) 2.637 (3) 102 (2)
C2—H2⋯O4 0.83 (2) 2.45 (2) 2.723 (3) 101 (2)
C4—H4⋯O6 0.90 (3) 2.34 (3) 2.667 (3) 101.7 (15)
C7—H7A⋯O7i 0.93 (3) 2.54 (3) 3.026 (3) 113 (2)
C8—H8B⋯O5ii 0.94 (3) 2.47 (2) 3.290 (2) 146 (2)
C9—H9A⋯O5ii 0.97 (3) 2.45 (3) 3.341 (2) 154 (2)
C9—H9B⋯O2 0.97 (3) 2.34 (3) 2.985 (3) 123 (2)
C12—H12A⋯O1 0.96 (3) 2.57 (2) 3.254 (3) 129 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y-1, z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The metal derivatives of picric acid are also known as medicines in homeopathy (Maurya et al., 1999). Silver picrate is a good antimicrobial agent. Zinc picrate is used in Bright's disease, headache, exhaustion, facial paralysis, nymphomania, paralysis, seminal emissions, spiral weakness, loss of memory and energy.

Ammonium picrate is a remedy for malarial fever and neuralgia, whooping cough, pain in the occiput and mastoid regions (Boericke, 1982).

N-substituted morpholines were used as anti-malarials (Lutz et al., 1947) and 4-methyl-4-(2-phenylethyl)-morpholinium iodide have shown marked hypertension in dogs at a dose of 5 mg./kg (Hazard et al., 1948). Morpholine derivatives are also used as agricultural fungicides in cereals and are known as ergosterol biosynthesis inhibitors (Raymond et al., 1999).

A search of the Cambridge Structural Database (Version 5.26; Allen, 2002) reveals that there are 90 known structures that contain the morpholinium cation. Of these there are 24 that have an N-ethyl chain, or longer, including the structure of 4-(2-fluoroethyl) morpholinium chloride (Briggs et al., 2004).

The title compound, [C6 H13Cl N O]+ [C6 H2N3 O7]-, was synthesized from picric acid and 4-(2-chloroethyl)morpholine.All geometrical parameters are in their usual ranges. The crystal structure is stabilized by C—H···O and N—H···O hydrogen interactions.

Related literature top

For the homeopathic uses of the metal derivatives of picric acid, see: Maurya et al. (1999). For the medical applications of ammonium picrate, see: Boericke (1982) and of morpholine derivatives, see: Lutz et al. (1947); Hazard et al. (1948); Raymond et al. (1999).For a related structure, see: Briggs et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Picric acid (2.29 g, 0.01 mol) was dissolved in water. 4-(2-chloroethyl) morpholine (1.49 g 0.01 mol) was dissolved in 25 ml of ethanol. The two solutions were mixed and 5 ml of 5 M HCl was added to this mixture and stirred for few minutes,filtered, dried and yellow crystals of 4-(2-Chloroethyl)morpholinium picrate were obtained by slow evaporation in ethanol. (m.p. 394 K). Analytical data: Found (Cald): C %: 36.89(37.96); H%: 4.22 (4.25); N%:14.67(14.75).

Refinement top

All hydrogen atoms were located from the difference Fourier map and refined isotropically with distance restraints 0.830–0.982 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. Depiction of C—H···O and N—H···O interactions in the title compound(I)
4-(2-Chloroethyl)morpholinium picrate top
Crystal data top
C6H13ClNO+·C6H2N3O7Z = 2
Mr = 378.72F(000) = 392
Triclinic, P1Dx = 1.611 Mg m3
a = 8.2063 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3075 (5) ÅCell parameters from 3665 reflections
c = 10.2896 (6) Åθ = 3.3–32.3°
α = 93.954 (5)°µ = 0.30 mm1
β = 95.284 (5)°T = 293 K
γ = 90.376 (4)°Rectangular, yellow
V = 780.65 (7) Å30.30 × 0.24 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.016
ω–2θ scansθmax = 32.3°, θmin = 3.3°
8478 measured reflectionsh = 1212
4960 independent reflectionsk = 813
3665 reflections with I > 2σ(I)l = 1415
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0877P)2 + 0.2886P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4960 reflectionsΔρmax = 0.85 e Å3
286 parametersΔρmin = 0.61 e Å3
Crystal data top
C6H13ClNO+·C6H2N3O7γ = 90.376 (4)°
Mr = 378.72V = 780.65 (7) Å3
Triclinic, P1Z = 2
a = 8.2063 (4) ÅMo Kα radiation
b = 9.3075 (5) ŵ = 0.30 mm1
c = 10.2896 (6) ÅT = 293 K
α = 93.954 (5)°0.30 × 0.24 × 0.18 mm
β = 95.284 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3665 reflections with I > 2σ(I)
8478 measured reflectionsRint = 0.016
4960 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.85 e Å3
4960 reflectionsΔρmin = 0.61 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H8B0.178 (3)0.150 (3)0.786 (2)0.035 (6)*
H9B0.286 (3)0.146 (3)0.883 (3)0.041 (6)*
H40.386 (3)0.587 (2)0.610 (2)0.033 (6)*
H9A0.401 (3)0.024 (3)0.793 (2)0.036 (6)*
H10A0.331 (3)0.311 (3)0.731 (2)0.039 (6)*
H20.299 (3)0.541 (3)0.972 (3)0.042 (7)*
H11A0.135 (3)0.023 (3)0.548 (2)0.040 (6)*
H12A0.241 (3)0.215 (3)0.532 (3)0.049 (7)*
H8A0.102 (3)0.044 (2)0.887 (3)0.033 (6)*
H11B0.300 (3)0.076 (3)0.597 (2)0.037 (6)*
H7B0.087 (4)0.208 (3)0.791 (3)0.058 (8)*
H12B0.355 (4)0.101 (3)0.435 (3)0.055 (8)*
H7A0.069 (3)0.121 (3)0.678 (3)0.052 (7)*
H10B0.504 (4)0.259 (3)0.757 (3)0.052 (7)*
H4'0.106 (3)0.125 (3)0.743 (2)0.037 (6)*
Cl0.22010 (6)0.00390 (7)0.83918 (7)0.0572 (2)
N40.18045 (17)0.05189 (15)0.73274 (15)0.0277 (3)
C80.1068 (2)0.0703 (2)0.8042 (2)0.0333 (4)
C90.3282 (2)0.1067 (2)0.7962 (2)0.0343 (4)
O80.4535 (2)0.1794 (2)0.58892 (18)0.0535 (4)
C110.2318 (2)0.0085 (2)0.5915 (2)0.0365 (4)
C100.4054 (3)0.2269 (2)0.7217 (3)0.0469 (5)
C70.0592 (2)0.1150 (2)0.7678 (2)0.0405 (4)
C120.3138 (3)0.1338 (3)0.5261 (2)0.0465 (5)
C50.2198 (2)0.43814 (18)0.62764 (19)0.0308 (3)
N20.47503 (19)0.70058 (17)0.84556 (19)0.0374 (4)
C20.2800 (2)0.51646 (19)0.8933 (2)0.0325 (4)
O10.0317 (2)0.25764 (19)0.67334 (16)0.0543 (5)
C40.3325 (2)0.54510 (18)0.6696 (2)0.0318 (4)
C30.3613 (2)0.58362 (18)0.80201 (19)0.0310 (4)
C10.1667 (2)0.40844 (18)0.85050 (19)0.0311 (4)
C60.1275 (2)0.35914 (19)0.71437 (19)0.0330 (4)
N30.0845 (2)0.34768 (17)0.95407 (18)0.0384 (4)
N10.1924 (2)0.40692 (18)0.48624 (17)0.0389 (4)
O50.5335 (2)0.76658 (17)0.76105 (19)0.0541 (4)
O20.0347 (2)0.2682 (2)0.92512 (19)0.0603 (5)
O40.5057 (2)0.73018 (19)0.96342 (19)0.0542 (4)
O30.1342 (2)0.3801 (2)1.06775 (18)0.0568 (5)
O70.0693 (3)0.3444 (3)0.4397 (2)0.0808 (7)
O60.2896 (3)0.4530 (3)0.4174 (2)0.0902 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0304 (2)0.0661 (4)0.0743 (5)0.0029 (2)0.0023 (2)0.0011 (3)
N40.0240 (6)0.0286 (6)0.0314 (7)0.0047 (5)0.0033 (5)0.0069 (5)
C80.0287 (8)0.0346 (9)0.0378 (10)0.0009 (7)0.0032 (7)0.0116 (7)
C90.0269 (8)0.0356 (9)0.0411 (10)0.0010 (6)0.0065 (7)0.0041 (7)
O80.0401 (8)0.0624 (10)0.0567 (11)0.0076 (7)0.0100 (7)0.0140 (8)
C110.0333 (9)0.0426 (10)0.0330 (9)0.0036 (7)0.0009 (7)0.0027 (7)
C100.0431 (11)0.0402 (10)0.0573 (14)0.0088 (9)0.0011 (10)0.0067 (9)
C70.0340 (9)0.0425 (10)0.0449 (12)0.0056 (8)0.0033 (8)0.0012 (9)
C120.0446 (11)0.0585 (13)0.0362 (11)0.0044 (10)0.0058 (9)0.0152 (9)
C50.0287 (7)0.0271 (7)0.0367 (9)0.0030 (6)0.0012 (6)0.0057 (6)
N20.0289 (7)0.0288 (7)0.0537 (11)0.0048 (6)0.0011 (7)0.0009 (7)
C20.0306 (8)0.0285 (8)0.0382 (10)0.0009 (6)0.0009 (7)0.0042 (7)
O10.0577 (10)0.0596 (10)0.0445 (9)0.0371 (8)0.0041 (7)0.0103 (7)
C40.0265 (7)0.0258 (7)0.0442 (10)0.0024 (6)0.0056 (7)0.0089 (7)
C30.0261 (7)0.0242 (7)0.0425 (10)0.0044 (6)0.0011 (7)0.0036 (7)
C10.0293 (8)0.0284 (7)0.0366 (9)0.0038 (6)0.0041 (7)0.0083 (7)
C60.0282 (8)0.0305 (8)0.0409 (10)0.0069 (6)0.0002 (7)0.0103 (7)
N30.0397 (8)0.0313 (7)0.0467 (10)0.0014 (6)0.0122 (7)0.0101 (7)
N10.0435 (9)0.0361 (8)0.0369 (9)0.0018 (7)0.0037 (7)0.0020 (7)
O50.0504 (9)0.0417 (8)0.0711 (12)0.0223 (7)0.0093 (8)0.0074 (8)
O20.0626 (11)0.0575 (10)0.0627 (11)0.0316 (8)0.0238 (9)0.0016 (8)
O40.0494 (9)0.0505 (9)0.0590 (11)0.0126 (7)0.0051 (8)0.0080 (8)
O30.0639 (11)0.0647 (11)0.0439 (9)0.0126 (9)0.0067 (8)0.0163 (8)
O70.0923 (16)0.1001 (17)0.0461 (11)0.0532 (14)0.0013 (10)0.0075 (10)
O60.0833 (15)0.142 (2)0.0462 (11)0.0453 (16)0.0161 (10)0.0066 (13)
Geometric parameters (Å, º) top
Cl—C71.788 (2)C12—H12A0.96 (3)
N4—C81.497 (2)C12—H12B0.99 (3)
N4—C111.503 (2)C5—C41.374 (2)
N4—C91.504 (2)C5—C61.455 (2)
N4—H4'0.91 (2)C5—N11.460 (3)
C8—C71.500 (3)N2—O41.228 (3)
C8—H8B0.94 (2)N2—O51.229 (2)
C8—H8A0.87 (3)N2—C31.449 (2)
C9—C101.510 (3)C2—C31.382 (3)
C9—H9B0.98 (3)C2—C11.386 (2)
C9—H9A0.97 (2)C2—H20.83 (3)
O8—C121.420 (3)O1—C61.250 (2)
O8—C101.426 (3)C4—C31.383 (3)
C11—C121.517 (3)C4—H40.89 (2)
C11—H11A0.98 (3)C1—C61.450 (3)
C11—H11B0.97 (2)C1—N31.456 (2)
C10—H10A0.98 (3)N3—O31.220 (2)
C10—H10B0.96 (3)N3—O21.225 (2)
C7—H7B0.93 (3)N1—O71.206 (3)
C7—H7A0.94 (3)N1—O61.210 (3)
C8—N4—C11112.20 (15)Cl—C7—H7A105.7 (17)
C8—N4—C9110.07 (14)H7B—C7—H7A103 (3)
C11—N4—C9108.38 (14)O8—C12—C11111.16 (18)
C8—N4—H4'106.9 (15)O8—C12—H12A106.5 (17)
C11—N4—H4'113.0 (15)C11—C12—H12A110.6 (16)
C9—N4—H4'106.1 (15)O8—C12—H12B106.1 (17)
N4—C8—C7115.12 (16)C11—C12—H12B108.8 (16)
N4—C8—H8B107.4 (14)H12A—C12—H12B113 (2)
C7—C8—H8B108.0 (14)C4—C5—C6124.17 (18)
N4—C8—H8A106.8 (16)C4—C5—N1116.02 (16)
C7—C8—H8A110.2 (15)C6—C5—N1119.80 (15)
H8B—C8—H8A109 (2)O4—N2—O5123.60 (17)
N4—C9—C10110.06 (17)O4—N2—C3118.95 (17)
N4—C9—H9B105.2 (15)O5—N2—C3117.44 (18)
C10—C9—H9B108.9 (15)C3—C2—C1118.96 (18)
N4—C9—H9A105.1 (14)C3—C2—H2120.0 (18)
C10—C9—H9A111.6 (14)C1—C2—H2121.0 (18)
H9B—C9—H9A116 (2)C5—C4—C3119.30 (16)
C12—O8—C10109.70 (17)C5—C4—H4118.7 (15)
N4—C11—C12109.86 (17)C3—C4—H4122.0 (15)
N4—C11—H11A109.0 (14)C2—C3—C4121.53 (16)
C12—C11—H11A111.4 (14)C2—C3—N2119.26 (17)
N4—C11—H11B102.7 (14)C4—C3—N2119.18 (16)
C12—C11—H11B116.2 (14)C2—C1—C6124.15 (16)
H11A—C11—H11B107 (2)C2—C1—N3114.57 (17)
O8—C10—C9111.16 (18)C6—C1—N3121.27 (15)
O8—C10—H10A113.2 (15)O1—C6—C1125.59 (17)
C9—C10—H10A109.7 (14)O1—C6—C5122.46 (18)
O8—C10—H10B105.5 (17)C1—C6—C5111.90 (15)
C9—C10—H10B111.4 (17)O3—N3—O2121.69 (18)
H10A—C10—H10B106 (2)O3—N3—C1118.95 (17)
C8—C7—Cl113.24 (15)O2—N3—C1119.35 (18)
C8—C7—H7B113.2 (19)O7—N1—O6121.2 (2)
Cl—C7—H7B107.2 (18)O7—N1—C5119.83 (18)
C8—C7—H7A114.0 (18)O6—N1—C5118.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.91 (3)1.89 (3)2.718 (2)151.2 (19)
N4—H4···O20.91 (3)2.25 (2)2.896 (2)127.6 (17)
C2—H2···O30.83 (3)2.34 (3)2.637 (3)102 (2)
C2—H2···O40.83 (2)2.45 (2)2.723 (3)101 (2)
C4—H4···O60.90 (3)2.34 (3)2.667 (3)101.7 (15)
C7—H7A···O7i0.93 (3)2.54 (3)3.026 (3)113 (2)
C8—H8B···O5ii0.94 (3)2.47 (2)3.290 (2)146 (2)
C9—H9A···O5ii0.97 (3)2.45 (3)3.341 (2)154 (2)
C9—H9B···O20.97 (3)2.34 (3)2.985 (3)123 (2)
C12—H12A···O10.96 (3)2.57 (2)3.254 (3)129 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H13ClNO+·C6H2N3O7
Mr378.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2063 (4), 9.3075 (5), 10.2896 (6)
α, β, γ (°)93.954 (5), 95.284 (5), 90.376 (4)
V3)780.65 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8478, 4960, 3665
Rint0.016
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.12
No. of reflections4960
No. of parameters286
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows(Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4'···O10.91 (3)1.89 (3)2.718 (2)151.2 (19)
N4—H4'···O20.91 (3)2.25 (2)2.896 (2)127.6 (17)
C2—H2···O30.83 (3)2.34 (3)2.637 (3)102 (2)
C2—H2···O40.83 (2)2.45 (2)2.723 (3)101 (2)
C4—H4···O60.90 (3)2.34 (3)2.667 (3)101.7 (15)
C7—H7A···O7i0.93 (3)2.54 (3)3.026 (3)113 (2)
C8—H8B···O5ii0.94 (3)2.47 (2)3.290 (2)146 (2)
C9—H9A···O5ii0.97 (3)2.45 (3)3.341 (2)154 (2)
C9—H9B···O20.97 (3)2.34 (3)2.985 (3)123 (2)
C12—H12A···O10.96 (3)2.57 (2)3.254 (3)129 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors are grateful to the Department of Science and Technology of the Government of India for funding under SR/S2/CMP-47/2003 research project.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoericke, W. (1982). Homeopathic Materia Medica, 9th ed., pp. 46, 148, 228,369, 516 and 687. Calcutta: Roy Publishing House.  Google Scholar
First citationBriggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732–740.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHazard, R., Corteggiani, E. & Renard, S. H. (1948). Compt. Rend. 95, 227.  Google Scholar
First citationLutz, R. E., Rufus, K. A., Gilbert, A., Philip, S. B., Marion, T. C., John, F. C., Adolf, J. D., James, A. F., Robert, H. J., Norman, H. L., Tellis, A. M., Kent, C. N., Russel, J. R. Jr, Newton, H. S. Jr, Smith, J. D. & James, W. W. (1947). J. Org. Chem. 12, 617–703.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaurya, R. C. & Sharma, P. (1999). Indian J. Chem. Sect. A, 38, 509–513.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRaymond, G. M. & Dimitrios, A. D. (1999). Biocontrol Sci. Technol. 9, 53–65.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds