organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­oxy­anilinium perchlorate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 30 July 2009; accepted 31 August 2009; online 5 September 2009)

In the title compound, C8H12NO+·ClO4, there are strong hydrogen bonds between the ammonium groups and the perchlorate O atoms.

Related literature

This study is a part of systematic investigation of dielectric–ferroelectric materials, including organic ligands (Li et al., 2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]), metal-organic coordination compounds (Hang et al., 2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026-2029.]) and organic–inorganic hybrids.

[Scheme 1]

Experimental

Crystal data
  • C8H12NO+·ClO4

  • Mr = 237.64

  • Monoclinic, P 21 /c

  • a = 5.0663 (10) Å

  • b = 22.601 (5) Å

  • c = 9.2091 (18) Å

  • β = 91.49 (3)°

  • V = 1054.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.928, Tmax = 0.93

  • 9440 measured reflections

  • 2415 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.138

  • S = 1.04

  • 2415 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.14 3.019 (3) 167
N1—H1B⋯O4ii 0.89 2.13 2.981 (3) 161
N1—H1B⋯Cl1ii 0.89 2.87 3.567 (2) 136
N1—H1F⋯O3iii 0.89 2.29 2.889 (3) 124
N1—H1F⋯O5 0.89 2.29 3.046 (3) 143
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

This study is a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrid. 4-Ethoxyanilinium perchlorate has no dielectric disuniform from 80 K to 450 K, (m.p. 459–460 K).

The asymmetric unit of the title compound is composed of cationic (C2H5O—C6H4—NH3+) and anionic (ClO4-)(Fig 1). The average Cl—O bond distances and O—Cl—O bond angles are 1.427 (2)Å and 109.46 (14)°, respectively, confirming a tetrahedral configuration. The strong N—H···O hydrogen bonding (Table 1) (N1—H···O3 2.889 (3) Å) make great contribution to the stability of the crystal structure and link the cations and anions to chains along the a axis (Fig 2).

Related literature top

For background to dielectric–ferroelectric

materials, see: Hang et al. (2009); Li et al. (2008)

Experimental top

Single crystals of 4-ethoxyaniliniumperchlorate are prepared by slow evaporation at room temperature of an ethanol solution of 4-ethoxybenzenamine and perchloric acid.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
4-Ethoxyanilinium perchlorate top
Crystal data top
C8H12NO+·ClO4F(000) = 496
Mr = 237.64Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4042 reflections
a = 5.0663 (10) Åθ = 3.5–27.6°
b = 22.601 (5) ŵ = 0.36 mm1
c = 9.2091 (18) ÅT = 298 K
β = 91.49 (3)°Prism, colourless
V = 1054.1 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2415 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2929
Tmin = 0.928, Tmax = 0.93l = 1110
9440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.3412P]
where P = (Fo2 + 2Fc2)/3
2415 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C8H12NO+·ClO4V = 1054.1 (4) Å3
Mr = 237.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0663 (10) ŵ = 0.36 mm1
b = 22.601 (5) ÅT = 298 K
c = 9.2091 (18) Å0.20 × 0.20 × 0.20 mm
β = 91.49 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2415 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1795 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.93Rint = 0.055
9440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2415 reflectionsΔρmin = 0.47 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00925 (11)0.32367 (2)0.57673 (6)0.0340 (2)
N10.4143 (4)0.28041 (9)0.2574 (2)0.0385 (5)
H1A0.54580.25680.23190.058*
H1B0.26570.25950.26160.058*
H1F0.45170.29610.34410.058*
O50.2716 (4)0.31960 (9)0.5619 (2)0.0524 (5)
C70.5402 (5)0.33118 (11)0.0325 (3)0.0407 (6)
H7A0.67060.30280.02050.049*
O10.2682 (4)0.46533 (8)0.1381 (2)0.0491 (5)
C60.3806 (5)0.32820 (10)0.1488 (3)0.0343 (5)
C30.3145 (5)0.41839 (11)0.0489 (3)0.0379 (6)
O40.0842 (4)0.28604 (9)0.6953 (2)0.0508 (5)
C80.5097 (5)0.37615 (11)0.0678 (3)0.0412 (6)
H8A0.61870.37820.14730.049*
O30.1320 (4)0.30237 (11)0.4463 (2)0.0690 (7)
C40.1528 (5)0.41445 (12)0.0693 (3)0.0481 (7)
H4B0.02100.44250.08140.058*
C50.1838 (5)0.36977 (13)0.1689 (3)0.0477 (7)
H5B0.07490.36740.24850.057*
C20.4325 (7)0.47354 (13)0.2604 (3)0.0537 (8)
H2A0.42040.43970.32490.064*
H2B0.61530.47860.22890.064*
O20.0857 (5)0.38241 (9)0.6044 (3)0.0738 (7)
C10.3323 (8)0.52830 (15)0.3361 (4)0.0750 (11)
H1C0.43670.53600.41960.112*
H1D0.34470.56130.27070.112*
H1E0.15130.52260.36640.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0336 (4)0.0366 (3)0.0317 (4)0.0012 (2)0.0009 (2)0.0012 (2)
N10.0387 (13)0.0395 (12)0.0367 (12)0.0015 (9)0.0069 (9)0.0010 (9)
O50.0312 (11)0.0653 (13)0.0610 (14)0.0010 (8)0.0053 (9)0.0067 (10)
C70.0417 (15)0.0362 (14)0.0441 (15)0.0104 (11)0.0001 (12)0.0050 (11)
O10.0579 (13)0.0459 (11)0.0442 (12)0.0144 (9)0.0143 (9)0.0122 (8)
C60.0343 (14)0.0338 (12)0.0344 (14)0.0023 (10)0.0052 (10)0.0007 (10)
C30.0384 (15)0.0376 (13)0.0379 (15)0.0027 (10)0.0016 (11)0.0014 (10)
O40.0505 (13)0.0586 (12)0.0437 (11)0.0009 (9)0.0078 (9)0.0163 (9)
C80.0474 (17)0.0410 (14)0.0357 (15)0.0051 (11)0.0103 (12)0.0004 (11)
O30.0636 (16)0.1054 (19)0.0375 (12)0.0328 (13)0.0096 (10)0.0041 (11)
C40.0420 (17)0.0505 (16)0.0523 (18)0.0139 (12)0.0129 (13)0.0090 (13)
C50.0413 (17)0.0547 (17)0.0477 (17)0.0079 (12)0.0135 (13)0.0097 (13)
C20.074 (2)0.0434 (16)0.0442 (17)0.0078 (13)0.0200 (15)0.0042 (12)
O20.0894 (18)0.0380 (12)0.0948 (18)0.0172 (11)0.0180 (14)0.0021 (11)
C10.113 (3)0.059 (2)0.055 (2)0.0190 (19)0.026 (2)0.0138 (16)
Geometric parameters (Å, º) top
Cl1—O21.408 (2)C6—C51.386 (4)
Cl1—O31.422 (2)C3—C41.382 (4)
Cl1—O51.4358 (19)C3—C81.389 (3)
Cl1—O41.4426 (19)C8—H8A0.9300
N1—C61.479 (3)C4—C51.371 (4)
N1—H1A0.8900C4—H4B0.9300
N1—H1B0.8900C5—H5B0.9300
N1—H1F0.8900C2—C11.502 (4)
C7—C61.361 (4)C2—H2A0.9700
C7—C81.379 (4)C2—H2B0.9700
C7—H7A0.9300C1—H1C0.9600
O1—C31.358 (3)C1—H1D0.9600
O1—C21.430 (3)C1—H1E0.9600
O2—Cl1—O3110.83 (16)C7—C8—C3119.4 (2)
O2—Cl1—O5110.84 (14)C7—C8—H8A120.3
O3—Cl1—O5108.09 (13)C3—C8—H8A120.3
O2—Cl1—O4109.88 (14)C5—C4—C3121.0 (2)
O3—Cl1—O4108.77 (13)C5—C4—H4B119.5
O5—Cl1—O4108.36 (12)C3—C4—H4B119.5
C6—N1—H1A109.5C4—C5—C6118.7 (3)
C6—N1—H1B109.5C4—C5—H5B120.7
H1A—N1—H1B109.5C6—C5—H5B120.7
C6—N1—H1F109.5O1—C2—C1106.0 (2)
H1A—N1—H1F109.5O1—C2—H2A110.5
H1B—N1—H1F109.5C1—C2—H2A110.5
C6—C7—C8120.3 (2)O1—C2—H2B110.5
C6—C7—H7A119.8C1—C2—H2B110.5
C8—C7—H7A119.8H2A—C2—H2B108.7
C3—O1—C2118.9 (2)C2—C1—H1C109.5
C7—C6—C5121.1 (2)C2—C1—H1D109.5
C7—C6—N1120.5 (2)H1C—C1—H1D109.5
C5—C6—N1118.4 (2)C2—C1—H1E109.5
O1—C3—C4115.5 (2)H1C—C1—H1E109.5
O1—C3—C8125.0 (2)H1D—C1—H1E109.5
C4—C3—C8119.5 (2)
C8—C7—C6—C50.4 (4)O1—C3—C4—C5178.6 (2)
C8—C7—C6—N1179.4 (2)C8—C3—C4—C50.6 (4)
C2—O1—C3—C4178.1 (3)C3—C4—C5—C60.2 (4)
C2—O1—C3—C81.1 (4)C7—C6—C5—C40.3 (4)
C6—C7—C8—C30.0 (4)N1—C6—C5—C4179.5 (2)
O1—C3—C8—C7178.6 (2)C3—O1—C2—C1179.9 (3)
C4—C3—C8—C70.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.143.019 (3)167
N1—H1B···O4ii0.892.132.981 (3)161
N1—H1B···Cl1ii0.892.873.567 (2)136
N1—H1F···O3iii0.892.292.889 (3)124
N1—H1F···O50.892.293.046 (3)143
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12NO+·ClO4
Mr237.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.0663 (10), 22.601 (5), 9.2091 (18)
β (°) 91.49 (3)
V3)1054.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.928, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
9440, 2415, 1795
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.138, 1.04
No. of reflections2415
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.47

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.143.019 (3)167.3
N1—H1B···O4ii0.892.132.981 (3)160.8
N1—H1B···Cl1ii0.892.873.567 (2)136.0
N1—H1F···O3iii0.892.292.889 (3)124.4
N1—H1F···O50.892.293.046 (3)143.0
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026–2029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds